ش | ی | د | س | چ | پ | ج |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
دسته بندی | فیزیک |
بازدید ها | 10 |
فرمت فایل | doc |
حجم فایل | 84 کیلو بایت |
تعداد صفحات فایل | 26 |
*مقاله درباره بعضی از کاربردهای قانون دوم ترمودینامیک*
در این بخش ما تعداد بیشتری از نتایج قانون دومترمودینامیک را بوسیله محاسبات تغییرات آنتروپی همراه با یک جریان گوناگون آزمایش می کنیم . برای سادگی کار ، ما توجه خود را به یک ترکیب سیستم بسته جلب می کنیم . حالتی که بوسیلة دو متغیر از سه متغیر V و T و P مشخص می شود .
انتخاب متغیرهای مستقل :
ترکیب دو قانون اول و دوم نیازمند این است که تغییرات دیفرانسیلی در انرژی داخلی به صورت زیر باشد .
(1)
معادلة (1) برای هر دو واکنش برگشت پذیر و برگشت ناپذیر درست است زیرا مربوط به توابع حالت S و U و V می باشد . محاسبة ds برای یک جریان برگشت ناپذیر نیازمند این است که ما یک راه برگشت پذیر میان حالتهای ابتدایی و انتهایی پیدا کنیم ، اما ds یک دیفرانسیل واقعی است و رابطه ای که در معادلة (1) عنوان شده ، جریانی است که محیط اطراف خود تبعیت نمیکند. معادلة (1) اینگونه عنوان می کند که تغییر انرژی در یک جریان به طور مشخصی آشکار است هنگامی که تغییر از ، تغییر دادن حجم هنگامی که آنتروپی ثابت است و برعکس متأثر باشد .
سپس برای S ثابت ، شیب U برخلاف V فقط فشار است و برای V ثابت ، شیب U بر خلاف S فقط دما است . سادگی این تفسیر از سرعتهای تغییر U با توجه به تغییرات S و V و با توجه به متغیرهای P ، V ، T ، S و V را به عنوان متغیرهای مستقل طبیعی تابع U معرفی و طبقه بندی می کنیم .
برای هر تابع حالت ترمودینامیکی ، ما متغیرهای طبیعی را مشخص می کنیم . این تفسیر حاللتی را بوجود می آورد برای معرفی کردن یک دگرگونی متغیرها ، مثل جایی که یک تابع y(x) از متغیر مستقل X بازنویسی شده به عنوان یک تابعی که در آن مشتق y(x) نسبت به x یک متغیر مستقل است . چرا یک فرد باید متغیرهای طبیعی یک تابع حالت ترمودینامیکی را پیدا کند ؟