دسته بندی | مدیریت |
بازدید ها | 13 |
فرمت فایل | doc |
حجم فایل | 11 کیلو بایت |
تعداد صفحات فایل | 14 |
بانک مرکزی
بانک مرکزی central bank ، بانک خزانه ( reserve bank ) یا مرجع پولی ( monetary authority ) ، نهادی است مسوول سیاست های پولی کشور یا ایالات و کشورهای عضو ( مثلاً اتحادیه اروپا ) . مسئولیت اصلی بانک مرکزی تامین ثبات پول ملی و عرضی پول است ، وظایف دیگر آن شامل کنترل نرخ بهره ی وام های دولتی ( subsidized loan interest ) و فعالیت به عنوان آخرین حامی مالی ( آخرین منبع وام دهی ) به بخش بانکداری در زمان بحران مالی است .
بانک مرکزی همچنین ممکن است دارای قدرت نظارتی جهت اطمینان از این امر باشد .که بانک ها و سایر موسسات مالی بی ملاحظه یا متقلبانه رفتار نمی کنند .
ریاست بانک مرکزی بر عهده ی یک مجری ( governor ) است ، در بانک مرکزی اروپا president و در مرجع پولی هنگ کنگ و مرجع پولی سنگاپور : مدیر عامل ( chief executive )
در بیشتر کشورها دولت مالک بانک مرکزی است و خود مختاری بانک مرکزی ناچیز است ، بدین ترتیب امکان مداخله ی دولت در سایتهای پولی وجود دارد . بانک مرکزی مستقل ، بانک مرکزی است که تحت قوانین فعالیت کند که از مداخله ی سیاسی پیشگیری کنند ، همانند : خزانه ی فدارل ایالات متحده ، بانک انگلیس ( از 19997 به بعد ) ، بانک خزانه ی هند ، بانک مکزیک ، بانک ژاپن ، بانک کانادا ، بانک خزانه استرالیا و بانک مرکزی اروپا .
فعالیت ها و مسئولیت های بانک مرکزی بدین شرح اند ( تمام این موارد در مورد همه بانک های مرکزی مصداق ندارد ) :
- انحصار انتشار اسکناس و مسکوک
- بانکداری دولت و بانکداری بانک ها ( وام دهنده ی نهایی )
- اداره ذخایر ارز و طلای کشور
- نظارت و قانون گذاری صنعت بانکداری
- تعیین نرخ بهره ی رسمی ( جهت کنترل نرخ تورم و نرخ برابری پول ملی ) و حصول اطمینان از اجرا شدن این نرخ بوسیله ی گستره ای از راهکارها و خط مشی ها .
بانک مرکزی در برابر بانک ملی
مسئولیت اصلی هر بانک مرکزی ، اداره ی خط مشی ای پولی جهت حصول اطمینان از ثبات پولی ملی است . این هدف با هدف بانک ملی national bank کهحصول اطمینان از ثبات اقتصادی داخلی است متفاوت است . برخی بانک های مرکزی آشکارا خود را بانک ملی معرفی می کنند ( بارزترین نمونه از این دست ، بانک خلق چین است ) برخی دیگر رسم خود را بانک ملی معرفی نمی کنند (نمونه ی بارز خزانه ی فدرال ایالات متحده).
ایالات متحده، اروپا و کشورهایی با پول تسعیر ناپذیر (non convertible) (از جمله چین، کوبا، کره ی شمالی و ویتنام). تفاوت ناچیز بانک مرکزی و بانک ملی در کشورهایی با پول تسخیر ناپذیر، به این دلیل است که پول آنها در هیچ جای دیگر به کار نمی رود، بنابراین مدیریت پول، کم و بیش به معنای مدیریت اقتصاد خواهد بود. اتحادیه اروپا به این دلیل جزو استثناآت است که کشورهای زیادی، پول یکسان دارند و به آهستگی به طرف اقتصادی مشترک در حال حرکت هستند، از بانک ها که سابقاً بانک ملی به شمار می رفته اند، در قالب بانک مرکزی اروپا همکاری می نمایند. ایالات متحده نیز متحصر به فرد است زیرا از زمان سیستم بروتون و ودر و سقوط استاندارد طلا در 1971، پول ایالات متحده تبدیل به پول اعتباری (Fiat currency: پول که ارزش آن بر پایه ی قابلیت تبدیل به فلز و سکه نیست) . پایه ذخیره ذرزی تمام جهان شده است (منظور از تمام جهان؛ تمام خریداران نفت، که بدون دلار، قادر به خرید نفت نخواهند بود)- به این واقعیت تمام خریداران نفت، که بدون دارابودن دلار، قادر به خرید نفت خواهند بود)- به این واقعیت استیلایی دلار (dollar hegmong) نیز گفته می شود، بدین معنا که مدیریت دلار ایالات متحده، نهتنها به اقتصاد ایلات متحده بلکه به اقتصاد جهان مؤثر است) فشارها جهت مهار تورم دلار آمریکا بسیار شدیدند. زیرا برای کشورهای دیگر که دست کم برای خرید نفت، مجبور به خرید دلار آمریکا هستند. اجتناب از داشتن تورم، زمانی که ایالات متحده به تورم دچار است، محال است.
بیشتر وظایف روزمره بانک مرکزی و بانک ملی کسان اند؛ هر دو آخرین منبع وام دهی هستند و بانک ها را در شرایط فشار مالی (financial discross) یاری می دهند( در قبال قیمتی). بانک مرکزی بر خلاف بانک ملی به طور اخص هدف مدیریت تورم (اعم از تورم قیمت و افزایش قیم هیا تورم صتفی و ماهش قیمت ها) را دنبال می کند و در وهله اول از عملیات بازار باز (open ,arket operation) بهره می گیرد. (تعقیب اهداف پولی بواسطه خرید و فروش های بزرگ، نه اثر نگذاری). بانک ملی برای مدیریت تورم و توسعه پایدار راهکارهای بیشتری در اختیار دارد از جمله خط مشی های صنعتی. بانک های ملی به ندرت مجزای از دولت هستند و توسط منتقدان دولت، مورد نقد قرار می گیرند.
مداخله در نرخ بهره:
بانک های مرکزی غالباً چندین نوع نرخ بهره ی کوتاه مدت را منترل می نمایند و به این ترتیب بازار سهام اوراق قرضه و نرخ بهره ی وام های وثیقه دار وسایز نرخ های بهره را تحت تأثیر قرار می دهند. برای مثال بانک مرکزی اروپا، نرخ بهره ی خود را در مجمع شورای اجرایی (Governing Council Meeting) و خزانه فدرال نرخ بهره ی خود را در مجمع هیات مجریان (Board of foverners Metting) اعلام می کنند.
خزانه فدرال بانک مرکزی اروپا هر دو یک یا چند گروه مرکزی دارند که مسوول اتحاد و تصمیمات اصلی در مورد نرخ بهره و نوع حجم عملیات بازار باز هستند و چنیدن شعبه برای اجرای خط مشی هایشان در مورد خزانه ی فدرال این شعبه ها، خزانه های فدرال محلی هستند و در مورد بانک مرکزی اروپا، بانکهای ملی کشور های اورپایی.
دسته بندی | کامپیوتر و IT |
بازدید ها | 12 |
فرمت فایل | doc |
حجم فایل | 157 کیلو بایت |
تعداد صفحات فایل | 21 |
هماهنگ سازی task و thread ها و Ada
اجرای یک برنامه تحت Ada دربرگیرنده اجرای یک یا چند task می باشد.هر task ، یک یا چند thread جداگانه برای کنترل مستقل یا همزمان در نقاطی که با سایر task ها تداخل دارد ایجاد می کند. شکل های مختلف این هماهنگ سازی و اثر متقابل بین task ها در این چند برگ توضیح داده می شود. این شکل ها به دسته بندی کلی زیر تقسیم می شوند :
1- فعال سازی و نابود سازی یک task
2- صدا زدن یک برنامه خاص که هماهنگ سازی را بر عهده بگیرد وداده ها و بخش های اشتراکی را مدیریت کند.
3- یک برنامه وقفه ای که شامل یک سری delay ها باشد. یا شامل یک سری برنامه های زمان بندی که به هر کدام از task زمان خاصی را بدهد.
4- یک سیستم خاتمه دهنده که به یک task اجهزه خاصی برای از بین بردن و از کار انداختن task دیگر می دهد.
زمان دهی پویا و زمان دهی ایستا static semantic , dynamic semantic :
در طول یک دوره یک task غیر فعال می تا زمانی که به فعالیت بازگردد. زمانی که یک task آماده شروع فعالیت گردید باید بخش ها و داده های مورد نیاز کامپیوتر به آن اختصاص داده شود. هر چند که این اجرا ممکن است روی یک سیستمmulti proccessorاجرا شود اما باز هم در چنین سیستم هایی اوقاتی پیش می آید که از دید task سیستم single proccess است و یا حتی روی هر یک از proccessor ها چندین task شروع به فعالیت می کنند. در این حالت به طور کلی دو نوع الگوریتم شروع به تقسیم بندی منابع سخت افزاری می نمایند که به نام های زمان دهی پویا و زمان دهی ایستا معروف هستند. هر چند هرکدام از این دو الگوریتم خود به الگوریتم های فراوان هماهنگ سازی دیگر تقسیم می شوند.
سیستم زمان دهی ایستا به این شکل عمل می کند که قبل از شروع به فعالیت task مشخصات آن را خوانده و به آن زمان می دهد. در صورتی که task ای از قبل نداند که چه مقدار زمان برای اجرا نیاز دارد این سیستم جوابگو نخواهد بود.
اما سیستم زمان دهی پویا که بسیار سنگین تر و پیچیده تر می باشد در هر لحظه اجرای task ها از آن ها توسط massage گزارش تهیه می کند و از این که یک task خاص چه مقدار زمان برای ادامه کار خود لازم دارد مطلع می شود و توسط زیر الگوریتم های مربوط به خود shairing را انجام می دهد. اما هر task چه قسمت هایی دارد؟ ما برای دانستن عمل هماهنگ سازی باید با قسمت های مختلف یک task آشنا شویم
همزمانی و مناطق بحرانی
موثر واقع شدن یک هسته مرکزی بازدخولی نیاز به استفاده از همزمانی دارد: اگر یک مسیرکنترل هسته مرکزی در حالیکه روی یک ساختمان داده هسته مرکزی فعالیت می کند، متوقف شود، هیچ مسیرکنترل هسته مرکزی دیگری اجازه نخواهد داشت تا بر روی همان ساختمان داده فعالیت کند مگر آنکه به یک وضعیت ثابت و پایدار بازگردد. بعلاوه برخورد دومسیرکنترل می تواند منجر به تخریب اطلاعات ذخیره شده بشود. بعنوان مثال، چنین تصور کنیم که یک V متغیرجهانی شامل تعدادی از موارد (items) قابل استفاده بعضی اجزا سیستم است. اولین مسیرکنترل هسته مرکزی (A) متغیر را میخواند و تعیین می کند که فقط یک مورد ( آیتم) قابل استفاده وجود دارد. در این نقطه، مسیرکنترل هسته مرکزی دیگر (B) فعال شده و همان متغیر را می خواند که هنوز دارای ارزش 1 می باشد. بنابراین V , B را کاهش داده و شرع به استفاده از آیتم می کند. سپس A فعالیت رادوباره آغاز می کند زیرا تقریبا ارزش V محتوی 1ـ می شود و دو راه کنترل هسته مرکزی از یک آیتم با اثرات تخریبی پتانسیلی استفاده می کنند؛ می گوئیم که "شرایط مسابقه" موجود است.
بطورکلی، دسترسی امن به متغیر سراسری با استفاده از "عملیات اتمیک" فراهم میشود. در مثال قبل، اگر دومسیرکنترل متغیر را بخوانند و V را با یک عمل بدون تداخل و تنها کاهش دهند، تخریب داده، امکان پذیر نخواهد بود. با اینحال هسته های مرکزی شامل ساختمان داده های بسیاری هستند که نمی توانند با یک عمل تنها قابل دسترسی باشند. برای مثال، معمولا جابجائی عنصر کلید از یک لیست پیوندی تنها با یک عمل ممکن نیست، زیرا هسته مرکزی حداقل به دو نقطه دسترسی در آن واحد نیاز دارد. هربخشی از کد که باید توسط پردازش به پایان برسد، قبل از اینکه یک پردازش دیگر بتواند وارد شود ناحیه بحرانی است. این مشکلات نه تنها در میان مسیرهای کنترل هسته مرکزی بلکه در میان پردازشهائی که از داده های مشترکی استفاده می کنند نیز رخ میدهد. تکنیکهای هم زمانی متعددی شکل گرفته اند. بخش بعدی به بررسی چگونگی هم زمان کردن و راههای کنترل هسته مرکزی می پردازد.
هسته های مرکزی انحصاری
در جستجوی راه حل ساده ای برای حل مشکلات هم زمانی، اکثر هسته های مرکزی یونیکس های ابتدائی انحصاری هستند : وقتی پردازشی در وضعیت هسته مرکزی اجرا می شود، نمی تواند بطور اختیاری متوقف شده و یا با پردازش دیگری جایگزین شود . بنابراین در یک سیستم تک پردازشی تمام ساختمان داده های هسته مرکزی که توسط پاسخگوی وقفه (interrupts) و استثناءها(exception update) به روز نشده اند برای دسترسی به هسته مرکزی امن و مطمئن هستند. در واقع، یک پردازش در وضعیت هسته مرکزی می تواند بصورت اختیاری از CPU صرف نظر کند، اما در این مورد باید اطمنیان حاصل کند که تمامی ساختمان داده های قابل دسترسی قبلی را که می توانسته اند تغییر کنند را باید دوباره چک کند. انحصاری بودن در سیستمهای چند پردازنده ای بی تاثیر است زیرا دو مسیرکنترل هسته مرکزی که در CPU های متفاوت در حال اجرا هستند می توانند با هم به ساختمان داده یکسانی دسترسی پیدا کنند.
غیر فعال کردن وقفه ها
مکانیسم دیگر همزمانی در سیستمهای تک پردازشی عبارتست از غیرفعال کردن تمامی وقفه های سخت افزاری قبل از ورود به منطقه بحرانی و فعال کردن مجدد انها دقیقا بعد از ترک منطقه بحرانی . این مکانیسم با وجود سادگی از نقطه اپتیمال بسیار دور است. اگر منطقه بحران وسیع باشد، وقفه ها برای زمان نسبتا طولانی غیرفعال باقی می مانند و تمامی فعالیتهای سخت افزار را منجر به فریز می کنند. علاوه براین، در یک سیستم چند پردازنده ای این مکانیسم کارگر نیست . هیچ راهی برای اطیمنان از عدم دسترسی CPU دیگری، به ساختمان داده های مشابهی که در منطقه حفاظت شده بحرانی update شده اند، وجود ندارد.
دسته بندی | معماری |
بازدید ها | 15 |
فرمت فایل | doc |
حجم فایل | 66 کیلو بایت |
تعداد صفحات فایل | 72 |
معماری دیجیتال
مقدمه
غرفه های نمایش آب که در سال 1997 به طراحی معماران ناکس (Architects know) در هلند برپا شدند نمونه هایی ابتدایی از تجربه واقعیت در کنار مجاز بودند. این غرفه ها که از فاکتورهای فیزیکی و موتورهای تولید فضای مجازی تشکیل می شدند نه برای نمایش بلکه بیشتر برای تجربه حالت سیالیت و بی وزنی به هر دو صورت مجازی و واقعی طراحی شده بودند.
فیزیک اصلی بناها تونلی متشکل از پوسته های کاملا بسته، مواج و پیوسته ای بود که در آن تضاد میان کف، سقف و دیوارها از بین می رفت و شخص با غوطه ور شدن در آن (چه در مایع واقعی و چه به کمک تصورات مجازی) ادراک امتدادهای افق و قائم را از دست می داد. هدف این بود که با تجربه احساسی متفاوت، ادراک واقعیات روزمره و همیشگی که به آن عادت کرده ایم کمرنگ شود و شخص در دنیایی ناآزموده متولد شود.
سطوح داخلی غرفه ها با انواع حسگرها پوشانده شده بودند که با توجه به سرعت و جهت گیری حرکت بازدید کننده داده های متفاوتی به پردازشگر مرکزی ارسال می کنند. این پردازشگر که کنترل مجموعه را بر عهده داشت پس از پردازش اطلاعات، مقتضی به موتور محرکه را دیکه می کرد. کار این موتور اعمال تغییر در شرایط فیزیکی محیط بود که در اینجا مشتمل بر ایجاد امواج نوری و صوتی بود که به مغبز حس نزدیکی و شناوری را القا می کنند. هرچه سرعت حرکت شخص در داخل تونل بیشتر باشد، سرعت امواج هم افزایش می یافت.
هنگامی که فرد روی یک گیرنده ساکن می ایستاد، نورها به شکل امواج حلقوی آب بر پای او ساطع می شدند. حسگرها و پردازنده های فوق العاده ای در تمام فضا پر شده بودند که می توانستند در آن واحد عمل هر تعداد شرکت کننده در یک تجربه میهمان را تحلیل و عکس العمل متناسب را به موتورهای محرکه دیکته کنند. فضای مجازی نورانی که از تداخل امواج متفاوت نور و صدای منبعث از حرکات متنوع تجربه گرها بدست آمد شگفت انگیز و غیرقابل پیش بینی بود.
در غرفه ای به نام آب نمک! بازدیدکننده با انواع مختلف تجربه حضور آب آشنا می شد. فضا در واقع منظر نوری بود از کابل های فیبر نوری با رنگ های متنوع. نورها انعکاس تصاویری واقعی از شرایط گوناگون آب و هوایی بودند بر سطوحی از جنس پلی کربنات. فرمان دهی کل بنا را یک بانک اطلاعات پایه سه بعدی در دست داشت که برای هر بازدیدکننده اطلاعات منحصر به فردی را ذخیره، خلق و پردازش می کرد و رفتار بنا را با توجه به آن تنظیم می نمود. رایانه برای کنترل فضای داخلی الگوریتمی از شرایط جوی و موقعیت سطح آب واقعی در سایت بنا را به عنوان داده های اولیه فرض می کرد (غرفه در کنار دریاچه واقع است). توام با این سایت نور سایت صوتی هم وجود داشت که همزمان بر اساس حرکات تجربه گرها کنترل می شد. فضاهای مجازی که از شرایط واقعی تولید می شدند به عوالم شش گانه ای تقسیم می شدند:
1. عالم یخ: ادراکی که تجربه کننده در این فضا دارد حس عبور از خلال توده های یخی است که به آرامی شناورند.
2. عالم H2O: در این تجربه، شخص در خیلی از مولکول های آب شناور می شود، او می تواند مولکولی را تعقیب کند و حتی آن را بگیرد.
3. عالم زیستی: انواعی از موجودات هوشمند ناشناخته در فضای مجازی شناور می شوند. برخی از آنها ممکن است دور شما جمع شوند و برخی دیگر از شما بگریزند.
4. عالم حباب: یک توده سیال و لغزنده در فضای مجازی خلق می شود که می توان در درون یا حول آن غوطه ور شد.
5. عالم سیال: تجربه گر در یک محیط روان شناور می شود و در آن به دام می افتد.
6. عالم تحول: شخص بین دو آسمان متغیر مجازی معلق می ماند، چشم اندازی گسترده از آسمان در برابر خود می بیند در حالیکه حس می کند ابرها از کنار او در حال عبورند.
چنانچه دیدیم می توان به کمک تصورات مجازی فضای محدود واقعی را به بی نهایت بسط داد. چنین فضاهایی اکنون به شکلی گسترده در هنر و صنعت سینما به کار گرفته می شوند. یک نمونه بسیار موفق آن فیلم سه بخشی (ارباب حلقه ها) بود که واقعیت مجازی نفوذپذیر برای هنرپیشگان و واقعیت مجازی نفوذناپذیر برای بینندگان محسوب می شد. مثال دیگر فیلم های آموزشی و آزمایشی تاریخی و باستانی است که در آن فرضا بنایی یا جانداری کاملا از بین رفته بازسازی می شود و به راحتی موجودیت و رفتار آن مورد مطالعه و شناخت قرار می گیرد. بدین طریق تجسم فضایی و لمس عوالم غیرممکن به تحقق پیوسته است. روندی که بسیاری از اختراعات طی کرده اند چنین است که ابتدا از فرض به نوشتار در می آیند، سپس در دنیای تخیلی سینما تجربه می شوند و از آنجا به واقعیت می پیوندند!
به طور کلی چنین نتیجه می گیریم که واقعیت مجازی می تواند ابزار بسیار توانمندی برای خلق هرگونه فضا باشد. این فضا را نمی توان به سادگی ایجاد کرد، خلق آن نیاز به تخصص و برنامه نویسی حرفه ای دارد. هرچند هم اکنون از دو سیستم (fly through) و (walk through) برای طراحی و تنظیم شهری استفاده می شود. ولی همگانی شدن آن نیاز به آموزش و ممارست دارد. این سیستم که در آن طرح و طراح با هم ادغام می شوند و تمام مسائل ادراکی را به صورت واقعی در برابر طراح قرار می دهد نه تنها بهترین وسیله برای نگاشت طرح است، بلکه بهترین ابزار برای تجربه و شناخت معماری و آموزش آن در دانشگاه ها است. اکنون که فرصت تجربه ی زنده و مستقیم همچون موقعیت معماران گذشته وجود ندارد و جایی برای آزمون و خطا باقی نمانده است، این وسیله می تواند بهترین جایگزین باشد. وظیفه ی معمار از یک کاراموز خلبانی (که به جای تمرین های خطرناک آموزشی با V.R کارآموزی می کند) حساس تر است! خلبان ناآزموده جسم مردمان را به خطر می اندازد ولی معمار بی شناخت روح انسان ها را نابود می کند!
ژیل دلوز
ژیل دلوز متفکری است که در دهه اخیر، بیشترین اتفاقات هنر تحت تاثیر اندیشه های او شکل گرفته است. متفکری که چندان در زادگاه خود، فرانسه، مطرح نشده است، ولی اندیشه هایش در شکل گیری رویدادهای فلسفی-هنری کشورهای انگلیسی زبان به خصوص امریکا، تاثیر به سزایی گذاشته است. ردپای اندیشه های او را می توان در معماری Hyper surface , Folding , Cyber space دید. کتابی تحت عنوان (After Deleuze: The Art Of Event) در اواخر سال 2001 در اروپا منتشر خواهد شد که بحث اصلی آن در مورد تاثیر اندیشه های دلوز بر دنیای هنر است. خیل عظیم کتابهایی که در اروپا، در راستای اندیشه های دلوز انتشار می یابد ما را وا می دارد که از کنار این رویدادها بی تفاوت نگذریم- این در حالی است که یک کتاب مهم نیز از او به فارسی ترجمه نشده است-. ژیل دلوز در سال 1925 در فرانسه متولد شد. بین سالهای 1944 و 1948 در سوربن فلسفه خواند. بعد از گرفتن لیسانس فلسفه بین سالهای 1948 و 1957 در مدارس فرانسه فلسفه درس داد و از سال 1957 تا 1960 در سوربن تاریخ فلسفه درس داد و چهار سال از پژوهشگران مرکز ملی پژوهش علمی (CNRS) بود. در سال 1969 به مقام استادی فلسفه رسید. به خواهش میشل فوکو در دانشگاه لیون، فلسفه درس داد و در همان سال از رساله دکتری خود با عنوان تفاوت و تمایز و رساله اسپینوزا و مساله بیان دفاع کرد. در سالهای 1987 از تدریس کنار گرفت و در سال 1996 خودکشی کرد. او آثار برجسته ای در زمینه های مختلف، از جمله فلسفه، هنر و ادبیات خلق کرده است. دلوز با همکاری فیلکس گتاری آثار ارزنده ای را درباره نظام نشانه ها و منطق معنا و اهمیت نما در سینما به رشته تحریر در آورده اند. اندیشه های کانت، اسپینوزا، برگسون و نیچه جایگاه خاصی در آرای این متفکر برجسته ی فرانسوی دارد و او بیش از همه وام دار تفکرات و اندیشه های نیچه است. راست است که او اعتقادی به نظام استاد و شاگردی نداشت ولی نتوانست خود را از دام این نگرش رها سازد و به حق می توان گفت که شاگرد راستین نیچه است.
از نوشتههای ژیل دلوز می توان به کتابهای زیر اشاره کرد: نیچه و فلسفه (1962)، فرانسیس بیکن منطق احساس (1981)، مارسل پروست و نشانه ها (1964)، تمایز و تکرار (1969)، تصویر-حرکت (1983)، تصویر-زمان (1985)، ضد ادیپ- سرمایه داری و شیزوفرنیک (1972)، کافکا در دفاع از ادبیات اقلیت (1963)، هزار سطح صاف (1980)، فولد، لایب نیتس و باروک (1988).
یکی از تاثیرگذاراترین آثار دلوز وگتاری، کتاب ضد ادیپ، سرمایه داری و شیزوفرنیک است. اساس کتاب در سخن روانکاوانه نوشته شده است. این کتاب در اصل به منزله یک واکنش مستقیم و تئوریک به شورش دانش آموزان و دانشجویان فرانسه در 1968 است. در ضدادیپ بحث در مورد سرکوب کردن غریزه است. پلیس دیگران و خویشتن شدن. به نظر دلوز و گتاری "عقده ادیپ که به مثابه مجموعه درونی شده ای از مناسبات قدرت ربوده شده است، حاصل اعمال سرکوب سرمایه داری در درون خانواده است."
دلوز و گتاری با پیروی از آرای لاکان و فروید و فراتر رفتن از آن، نقد روانکاوانه ریشه ای و نوعی روش متنی موسوم به تحلیل شیزو (schyzo-analysis) برای قرائت متون ارائه می دهند و در اصل می توان گفت دلوز در تحلیل شیزو خود را به مباحث هرمنوتیک مدرن نزدیکتر کرده است. او بر این عقیده است که انسان در حال نوشتن یک نامه خیلی ساده تا یک کتاب پیچیده همواره در حال سرکوب کردن معنایی است که از نامه مستفاد می شود و در حال تزریق معنایی است که خود مدنظر دارد و در کل می توان گفت متن دوسویه است. شخصیتی که خود دارد و شخصیتی که ما به آن می دهیم. حمله دلوز و گتاری در درجه اول متوجه مقوله بازنمایی میل (هوس) براساس فقدان یا نیاز است. آنها این مقوله را یکی از تمهیدات سرمایه داری برای از شکل انداختن ناخودآگاه می شمارند.
تقلید، اجتماعی شدن با زیر سلطه و اقتدار رفتن، تشابه را مهم انگاشتن، از تمایز گریختن، به فرمان پدر یا حاکم در آمدن، نسخه برداری کردن، شبیه کشی و رونویسی کردن است که سرانجام به فرمان زیستن را همراه می آورد. به نظر دلوز هنری که بر پایه تقلید شکل می گیردهنری استوار بر پارانویا است. به نظر آنها، بین فرد- که به میل تعریف می شود.- و جمع- که با قانون تعریف می شود- هیچ تمایزی نیست بلکه تنها چیزی که وجود دارد، میل اجتماعی است (میل اجتماعی جای فرد و جمع را می گیرد و این دو در واقع وجود خارجی ندارند) درنتیجه، میل همیشه در حرکت است، همیشه، بسته به موقعیت، از اجزا متفاوت تشکیل می شود، بیشتر ماشین گونه است تا نمایش ادیپ وار بازنمایی. به عکس تحلیل شیزو نوعی ناخودآگاه می سازد که در آن میل (هوس)، سیلانی آزاد است. نوعی انرژی که اضطراب ادیپی آن را محدود نمی کند، بلکه سرچشمه مثبت آغازهای تازه است. تحلیل شیزو به معنای آزاد کردن میل است، آنچه میل ناخودآگاه پارانویدی است براساس ملت، خانواده، کلیسا، مدرسه و نظایر آنها خط و مرز می کشید ناخودآگاه شیزوفرنیک با واژگون کردن این کلیت های سرمایه داری، خط و مرزها را از بین می برد.
دلوز و گتاری به انواع تفسیرهای متعالی حمله می کنند و فقط تفسیر غیرمتعالی را که از تحمیل معنایی مسلط بر متن اجتناب می کند مجاز می شمارند. تفسیر متعالی سعی می کند بر متن حاکم شود و این کار پیچیدگی حقیقی آن را تضعیف می کند. رابطه شیزوفرنیک با ادبیات اقدام به واژگون سازی می کند و خود را از قید نظام آزاد می کند چنانچه اثر را نه به مثابه متن بلکه اساسا غیر رمزی تلقی کنیم تحلیل گر شیزو نیز نیاز دارد تا سخن های بالقوه انقلابی متن را به فعالیت وا دارد و در اینجاست که تحلیل گر شیزو هر گونه بازنمایی را مرز زدایی می نماید.
میشل فوکو در پیش گفتاری که در سال 1977 بر این کتاب نوشت، آورده است: "ضد ادیپ بودن به یک سبک زندگی و شیوه ای از اندیشیدن و زندگی بدل شده است. دامهای ضد-ادیپ دامهای طنز؛ فراخوانهای بسیار به تخلیه خود، متن را کنار گذاشتن و کتاب را محکم بستن. کتاب اغلب ما را وا می دارد که بیاندیشیم جز طنز و بازی نیست آنجا که چیزی اساسی در میان است، چیزی که بیش از همه جدی است (یعنی) تعقیب هم شکلهای فاشیسم، از عظیم ترین شکلهای آن که ما را محاصره و لگدمال می کنند تا شکلهای جزئی آن که زندگی روزمره مان را به استبداد و ستمی زننده بدل می کنند".
کتاب دیگر دلوز و گتاری به نام هزار سطح صاف در اصل ادامه ضد ادیپ و روشنگر ساختار شیزوفرنیک غریزی است. موضوع اصلی کتاب هراس از جهان است. به گمان دلوز و گتاری هر تاویل، از آغاز نشانی از هراس در خود داردو آنها این هراس را بیماری تاویل می نامند. دلوز در مصاحبه ای که زمان کوتاهی پس از درگذشت او به چاپ رسید به این تفسیر دست برد که کتاب هزار سطح صاف بهترین کتابی است که به رشته تحریر درآورده است و کتابی است که هنوز زمانش فرانرسیده و غنای مفهومی آن به طور وسیعی نامکشوف مانده است. بحث اصلی کتاب در مناسب طرح داستان، شناخت پارانویا است. دلوز و گتاری فصلی از کتاب هزارسطح صاف را به تحلیل شدن ها (تغییرها) اختصاص می دهند. در این جا واژگان سطح صاف به راههای خاصی ارجاع دارد که در طول آن مفهومی می تواند به مفهوم دیگر تبدیل شود. اینها از شیوه ای به دست می آیند که در آن اجزای مفهومی داده شده همراه با دیگر مفهوم ها وارد مدارهای تشخیص ناپذیری می شوند. در این کتاب دلوز و گتاری از واژه ای به نام ریزوم در پیش برد مطالبشان استفاده می کنند.
اصطلاح ریزوم تداعی کننده اندیشه افقی است. ریزوم (Rhizome) از ریشه یونانی (Rhiza) به معنای ریشه و ساقه زیرزمینی برخی از گیاهان است که غده هایی در رویه آن آشکار می شود و ریشه هایش به صورت خودرو هستند و در بخش زیرینش می رویند. گیاهی که به گفته دلوز بی ریشه است، فاقد ساختار متکی به پایگان که "بی منطق" زندگی می کند و شدن آن تابع قانون و قاعده خاصی نیست. واحدهایش نومادهای هستند که مکانی ندارند. به طور کلی ریزوم در تضاد با درخت که پایگان خاص دارد بیشتر خود را نمایان می کند.
به اعتقاد دلوز و گتاری بخش اعظم اندیشه غرب تحت سیطره ساختاری از دانش قرار دارد که آنها آن را (Aborescence) می نامند؛ شیوه دانستن و شناختن همانند درخت، قائم و عمودی است. برای مثال در زیست شناسی با علم رده بندی و طبقه بندی گیاهان و موجودات زنده سروکار داریم که توسط کارل فن لینه گیاه شناس سوئدی ارائه شد. در شیمی با رده بندی ها و سلسله مراتب درختی پورفیری (porphyrian trees) سروکار داریم. در زبان شناسی با رده بندی درختی جملات سروکار داریم که توسط چامسکی ارائه شد. این نوع نگرش حتی در جهان اسلام هم قابل مشاهده است، طبقه بندی علوم که حکما و علمای قدیم ارائه دادند، همان نمودار سلسله مراتب و درختی است که از آرای یونانیان به وام گرفته شده است. به عنوان نمونه رده بندی علوم که ابونصر فارابی در کتاب احصاءالعلوم بیان داشته، ریشه در نگرش چنین تفکری است. این درختها در واقع رده بندی های سلسله مراتبی هستند که پیوندها و اتصال های محدود و قاعده مندی را بین اجزاء و عناصر سازنده خود اعمال می کنند. این قبیل نمودارها همچون درختان معمولی از یک تنه اصلی و چندین ساقه و شاخه ها و برگهای بی شماری تشکیل می شوند به عبارت دیگر هرکدام به نوبه خود از یک وحت یا یگانگی اصلی ریشه می گیرند. ریشه این نوع تفکر به افلاطون بر می گردد. فسفه درخت گونه عمودی افلاطون بیانگر جهان مادی و تقلیدات و ظواهر که ساقه های تنه ای هستند که این تنه همان عالم مثال یا جهان ایده هاست.
به عنوان نمونه انواع انسان متناسب با نژاد، رنگ، چهره و ... دارای تقسیمات بی شماری است (زرد سفید سیاه)، جملگی تجلی و نمود صورت ایده آل انسانی است که در جهان ایده ها بدون تغییر و تغیر باقی است. بدین صورت انسان مثالی تنه اصلی (درخت) و نژادها ساقه های آن هستند که از این تنه جدا شده اند.
ساختار درختی که دلوز و گتاری به تحلیل و تنقید آن پرداخته اند، عقده ادیپ است از جهتی تمامی انواع مختلف فرآیندهای روانی را می توان به یک واقعه یا عارضه آسیب شناختی اصلی ای بازگرداند که طی آن کودک از مادر جدا می گردد. این فقدان مادر منشاء و زیربنای میل و آرزو هاست و تنها با ورود کودک به عرصه نظم نمادین –نظم ناشی از حاکمیت قانون و نام و ابهت پدر- برطرف می گردد. لیکن دلوز و گتاری نظریه مثلث ادیپ –متشکل از اصول و قواعد تحمیلی از سوی پدر، میل و فقدان مادر- را رد کرده و آن را قبول ندارند. بلکه به صورتی افقی و درنتیجه پیوندهای متقابل اجتماعی ایجاد می گردد و پیوندهای متقابل بین کودک و محیط یا جامعه پیرامونی وی همواره در حرکت، تغییر و تحول، جریان و تکامل بوده و رشد و گسترش می یابند، درست همانند تارها و رشته های علف های دارای ریشه غده ای، همانند ریشه های فرعی و زاید یا ریشه های غده ای یا ریزوم.
بدین ترتیب در نقطه مقابل ساختار درختی و عمودی دانش، دلوز و گتاری روش درک و شناخت افقی، ریشه ریشه ای (ریزومی) و علف گونه را تدوین و ارائه کرده اند. نوعی از علف ها به جای یک ریشه اصلی دارای بیشمار ریشه های فرعی و زایده مانند هستند، که هیچ یک از آنها ریشه اصلی به شمار نمی رود؛ هر ریشه یا زایده نیز به نوبه ی خود به طور تصادفی شبکه های به هم پیچیده و به هم پیوسته درهم و برهمی را با یکدیگر پیوند می زند، در این شبکه ها هر غده می تواند با غده های دیگر مرتبط می گردد. بدین ترتیب به اعتقاد دلوز و گتاری در حالیکه درخت و نمودار درختی در فکر ایجاد، تثبیت و دوام خود بوده و مدام به فکر ماندن و بودن (سکون و عدم تکامل) است، ریشه یا ریزوم همواره در حال ایجاد پیوندها و اتصالات بیشتر و به فکر تحول، تکثیر، ازدیاد، رشد و تکامل است. بنابراین درخت و نمودار درختی با منشاءها و خواستگاه ها، بنیان ها یا مبانی، اصول بنیادین، هستی شناسی ها و با ریشه های آغازین و ریشه های پایانی سروکار دارند. درحالیکه ریزوم با پیوندها و اتصالات سطحی، ناماندگاری و عزیمت سروکار دارد.
افقی بودن اندیشه، که نیچه در دوران مدرن آن را باب کرد در کارهای مشترک دلوز و گتاری جایگاه خاص دارد. این اندیشه عمدتا طبق هنجارها و مفاهیم خاص خود عمل می کند. به نظر دلوز فیلسوفی که می اندیشد خود را از تاریخ فلسفه جدا می کند. در اصل اندیشه افقی، اندیشه عمودی سلسله مراتب دیوان سالارانه ای روزمره رااندیشه ای که متضمن استحکام بخشیدن به هویت ها است دور می زند ولی با آن در تقابل قرار نمی گیرد. دلوز می گوید: "تفاوت و تکرار در دوران معاصر جای این همانی (هویت، Identity) و باز نمایی را گرفته است. درواقع، تفاوت و تکرار شاخصه های حرکت به سوی اندیشه ای هستند که بازنمایی نمی کنند و از بیخ و بن افقی است. اندیشه از بیخ و بن افقی چه بسا به شکلی ناسازگون نه به نظم همانی (همه چیز در یک سطح) بلکه به بی ثباتی تفاوتها می انجامد که در این جایگاه بی ریشه بودن (بی مکان) بنیان هنر مدرن است.
دلوز معتقد است که درک صحیح از جهانی که در آن تفاوت و اختلاف شرط اصلی است، نه تنها مستلزم آن است که ما مفاهیم هویت (Identity) و شباهت (similarity) را مجددا به عنوان تصورات ثانویه مفهوم پردازی نماییم، بلکه خود تفاوت میان آنها نیز باید از نو ترسیم گردد، و برای این منظور مفهوم پیچیده تکرار را پیشنهاد می کند.
دلوز یکی از کسانی است که کوشید افلاطون گرایی را رد کند. او می گوید: "رسالت فلسفه ی مدرن باژگونی افلاطون گرایی است." واژگون ساختن افلاطون گرایی یعنی وادار کردن وانموده ها به فراز آمدن و هایش حقوقشان در میان شمایل ها و رونوشت ها.
فهرست مطالب
مقدمه1
ژیل دلوز 5
منطق فازی 33
هندسه فراکتال و نظریه آشوب 35
منطق 39
تعریف منطق: 39
منطق صوری 40
منطق ارسطویی 41
منطق فازی 42
متغیرهای زبانی و منطق فازی 45
فازی بودن اعداد 46
توانایی منحنی های فازی در توضیح عبارت نسبی 48
2. منحنی زندگی 49
کنترل و ارتباط 50
کنترل عصبی فازی 51
کاربردهای منطق فازی 52
1.کاربرد در شبکه های مصنوعی 52
2. سیستم های ارتباطی 53
3- کنترل ترافیک 54
4- کنترل هوشمند 55
کاربرد های دیگر 56
مورفینگ 57
طراحی و ساخت معماری در عصر دیجیتال 59
مقدمه 59
معماری های دیجیتالی 60
ساخت دیجیتالی 66
سفارش انبوه 70
نتیجه گیری 72
دسته بندی | کامپیوتر و IT |
بازدید ها | 8 |
فرمت فایل | doc |
حجم فایل | 943 کیلو بایت |
تعداد صفحات فایل | 41 |
اساس سیستم های حفاظت الکترونیکی
تمامی سیستم های امنیت و حفاظت الکترونیکی از اجزای نشان داده شده در شکل زیر تشکیل شده اند. در این سیستم ها یک یا چند واحد حسگر وجود دارد که در هنگام وقوع خطر گونه ای از سیگنال الکتریکی را تولید میکنند و سیگنال های خروجی این حسگرها نیز از طریق « خط انتقال داده » به واحد « واکنش گر خطر » که شامل ادواتی مانند آژیر خطر، دستگاههای مسدود کننده و یا بازکننده الکترو مکانیکی می باشد اعمال میگردد. باید توجه کرد که در شکل زیر هر یک از سه واحد اصلی تشکیل دهنده ی سیستم منابع تغذیه مستقلی دارند ولی در عمل امکان دارد دو یا چند واحد یک منبع تغذیه مشترک داشته باشند.
شکلهای 2 تا 5 چهار نوع مختلف سیستم حفاظتی ساده تا متوسط ( از نظر پیچیدگی ) را نشان میدهند. اولین آنها یک « زنگ درب منزل الکترونیکی » یا « زنگ هشدار دهندهی ورود اشخاص به مغازه » میباشد که در مورد اول حشگر خطر یک دکمه ی فشاری است و در مورد دوم حسگر خطر یک میکرو سوئیچ می باشد. در هر دوی این موارد عملکرد مدار به گونه ای است که با بسته شدن کلید s1 یک تایمر ( زمان سنج ) به مدت 10 ثانیه یک زنگ یا بوق هشدار دهنده را روشن نگه میدارد ، این عمل با فشار s1 و با صرف نظر از مدت زمان بسته بودن آن همواره تکرار میگردد. در حالت ایده آل اگر که چنینی مداراتی در حالت غیر فعال باشند جریان مصرفی آنها می بایستی صفر باشد. نکته ای که در مورد این دو نوع مدار باید توجه کرد این است که در مدار « زنگ درب منزل » حسگر خطر ( دکمه s1 ) به طور ارادی توسط شخص ناشناس فعال میگردد و به طور عمد سعی میگردد که توجه صاحبخانه جلب گردد ولی در مدار « هشدار دهنده ورود اشخاص به مغازه » شخص که وارد مغازه یا فروشگاه میشود به طور غیر ارادی کلید s1 را فعال میکند و متعاقباً به مغازه دار هشداری مبنی بر ورود شخص به داخل فروشگاه میشود که البته ممکن است این شخص یک مشتری و یا
یک سارق باشد. شکل شماره 3 مدار یک دزدگیر خانگی ساده را نشان میدهد که در آن سیستم اصلی با بسته شدن کلید s2 فعال میگردد. در این مدار کلید s1 حسگر خطر بوده که در واقع متشکل از تعداد دلخواهی کلیدهایی است که به صورت سری به هم وصل شده اند ( اغلب این کلیدها از نوع « کلید reed و آهنربا » میباشند ) ، این کلیدها در حالت عادی در وضعیت بسته قرار دارند و هر یک برای حفاظت درب یا پنجره ی بخصوصی به کار برده می شوند و اگر هر یک از پنجره ها و یا دربهای محافظت شده باز شوند و یا به هر دلیلی مسیر الکتریکی مجموعه کلیدها قطع شود مجموعه مرکب کلید s1 باز شده و با باز شدن کلید r1 ورودی فیلتر پایین گذر که حذف کننده حالتهای گذرلا می باشد توسط مقاومت S1 در وضعیت HIGH قرار میگیرد و پس از تاخیر کوتاهی که معمولاً حدود 200 میلی ثانیه می باشد خروجی این فیلتر یک تایمر 5 دقیقه ای را فعال میکند که به طبع آن رله RLA توسط ترانزیستورQ1 روشن میشود و نهایتاً یک زنگ خطر یا یک آژیر به واسطه اتصال کنتاکت های رله RLA به کار می افتد. رله RLA و زنگ خطر 5 دقیقه پس از به کار افتادن به طور اتوماتیک خاموش میشوند ولی امکان از کار انداختن آنها توسط بازکردن کلید S2 ، فقط با فشار کلید S3 که مستقیماً موجب فعال شدن رله RLA میشود امتحان نمود.
شکل 4 به صورت مصور یک سیستم مدرن آشکار ساز حرکت مادون قرمز انفعالی یا PIR ( سرنام آن عبارت (Passive Infra Red ) را نشان میدهد. هرگاه شخصی وارد محدوده آشکارسازی این سیستم شود این سیستم به طور خودکار میتواند آژیر یا زنگ خطر را به کار انداخته و یا نورافکنها را روشن کند. مسافت اشکارسازی سیستم PIR حداکثر 1 متر میباشد و زاویه آشکارسازی عمودی آن 15 درجه بوده و زاویه آشکارسازی افقی ان نیز بین 90 تا 180 درجه میباشد. سیستم PIR میزان بسیار اندک اشعه مادن قرمز حاصل از حرارت بدن را آشکار میکند ولی آژیر یا زنگ خطر را هنگامی فعال میکند که این منبع حرارتی در محدوده آشکارسازی ان حرکت کرده یا جابه جا شود. اغلب سیستم های PIR دارای مصونیت بالایی در برابر خطا و اشتباه هستند و انواعی ا زاین سیستم ها وجود دارند که از رله ی خروجی که در حالت عادی روشن میباشد برای هشدار دادن در مورد قطع برق یا خرابی سیستم تغذیه نیز استفاده میکنند. سیستم های مذکور معمولاً به منبع تغذیه 12 ولت DC نیاز دارند و مصرف جریان آنها در حالت عادی 20 میلی آمپر میباشد. آشکارسازهای PIR به طور گسترده ای در سیستم های دزدگیر مدرن برای حفاظت اتاقها یا محوطه به کاربرده میشوند.
دسته بندی | برق |
بازدید ها | 22 |
فرمت فایل | doc |
حجم فایل | 773 کیلو بایت |
تعداد صفحات فایل | 38 |
ترکیب مدار ترمز از کتاب Brake System
ترکیب مدار ترمز:
مقررات قانونی سیستم انتقال دو مداره را (انتقال نیرو) به عنوان جز ضروری تعیین می کند. DIN 74000 پنج حالت مشخص کرده است که در مدارهای (ضربدری) و (موازی) استفاده می شوند . نحوه نصب شیلنگهای روغن ، اتصالات، محفظهها و وسایل آب بندی دینامیک و ثابت در ترکیب قرار گرفتن آن در یک مدار ترمز توضیح داده شده است . گاهی مواقع اشکال و نقصان در یک قسمت از مدارهای HH,HI,LL باعث از بین رفتن ترمز یک چرخ شده که خود می تواند به از بین رفتن کل مدارهای موجود بینجامد.
معمولا اتومبیلی که بیشتر وزن خود را در جلو دارد از مدار ترکیب ضربدری بهره میبرد برای تاثیرات ترمز ثانوی فراهم می کند. طرح | | برای وسایل نقلیه دراتومبیلهای سنگین و نیمه سنگین و کامیونتها مورد استفاده دارند .
نوع | |
مدارهای جداگانه برای جلو واکسل عقب- یک مدار در چرخهای جلو عمل می کند و دیگری در عقب. (شکلl a)
نوع
طرح توزیع قطری. هر کدام از مدارها در یک چرخ جلو و در جهت مخالف در عقب میباشد.شکل(lb)
نوع HI
یک مدار در جلو و یک مدار ثانوی دیگر برای چرخهای جلو وعقب می باشد. یک مدار ترمز در هر دو محور عمل می کنند در حالی که بقیه فعالیتها فقط در چرخ جلو عمل می نماید. (شکلlc)
نوع LL
جلو و عقب / جلو و طرح توزیع عقب. هر کدام از مدارهای ترمز در روی هر دو چرخ جلو و یکی از چرخهای عقب (شکلle) عمل می نماید.
نوع HH
جلو و عقب/ جلو و طرح توزیع عقب. هر کدام از مدارها بر روی هر دوی چرخهای جلو وعقب عمل می نماید.
سر خوردن
( کتاب سیستم ترمزهای اتومبیل)
هنگامی که اتومبیل دور می زند ، چرخهای جلو به طرفی که با آن روبرو هستند حرکت حرکت نمی کنند . زاویه بین جهت حرکت و جهتی که چرخهای جلو با آن روبرو هستند به نام زاویه لغزش خوانده می شوند . بنابراین ، تایرها در نزدیکی نواحی تماس خود با زمین پیچیدگی حاصل می کنند . این سطوح به جای اینکه بیضی شکل باشند ، غیر قرینه هستند . نیروی کنج حاصله بستگی به زاویه لغزش دارد که به نوبه خود در اثر وجود چسبندگی ، به حد معینی محدود می شود . زیرا اگر چسبندگی به حد خود برسد تایر در محل تماس خود سر می خورد تا کم و بیش حالت بیضی شکل اثر خود را حفظ کند . در این حالت ، تایر دیگر پیچیدگی بیشتر نمی پذیرد، و از این به بعد هم دیگر نیروی کنج دهنده کافی ایجاد نخواهد کرد . بنابراین ، اگر یک بار چرخ سر بخورد اتومبیل دیگر از فرمان تبعیت نخواهد کرد .
در صورتی که ترمز شدیدا اعمال شود و شتاب کند کننده شگفت انگیزی ایجاد گردد ، اگر راننده در آخرین لحظه نتواند بر فرمان تسلط یابد و خود را در مسیر صحیح قرار دهد ، هم جبهه مقابل و هم طرفین جاده مواجه با خطر انحراف خودرو خواهد بود .
این شتابهای کند کننده ، به خصوص در سرعتهای زیاد و هنگامی که چسبندگی تقلیل پیدا کرده است خیلی خطرناکتر خواهد بود .
منحنیها در شکل 2 نشان می دهد که برای انواع مختلفی از سطوح جاده، چگونه ضریب اصطکاک و با آن عمل ترمز کردن به حداکثر میزان بعنوان یک عملکرد فشار ترمز افزایش می یابد. در یک خودرو بدون ABS؛ فشار ترمز می تواند بیش از این میزان حداکثر افزایش یابد به گونه ای که ترمز مجدد بالا فاصله صورت می گیرد. نتیجه شکل تایر بدین معنی است که تکه ارتباطی بین لغزنده و سطح جاده تا حدی افزایش می یابد که ضریب اصطکاک شروع به کاهش می نماید و لغزش ترمز افزایش می یابد. در نهایت، چرخها قفل می گردد. (نقطه B).
فرایندهای اصطکاکی می تواند به دو اصطکاک استاتیک (ساکن) و متغیر تقسیم می شود. اصطکاک (مالش) ساکن برای تودههای جامد بیشتر از اصطکاک متغیر است. همانطور که این مطلب تلویحا بیان میدارد، شرایطی وجود دارد که تحت آن شرایط ضریب اصطکاک در تایر لاستیک در حال دوران بیشتر از زمانی است که چرخ قفل شده است فرایندهای متغیر هم زمانی رخ میدهد که تایر لاستیکی دوران مینماید. از این شرایط با نام سرخوردگی یاد میشود چگونگی اتفاق افتادن سریع این نقطه میتواند از کاهش شیب در منحنی اصطکاک در شکل 3 دیده شود. ، مرحله ای را نشان میدهد که در آن سرعت جنبی چرخها VR از سرعت خودرو (VF) عقب میماند. چه خودرو یا سیستم ABS تجهیز شده باشد یا نه، اکثر ترمزها در منطقه ثابت در طرف چپ میدان کنترل ABS باقی میماند. ABS تنها در پاسخ به ترمز اضافی وارد عمل میشود. این سیستم از حلقه بسته کنترل برای جلوگیری از فشار ترمز از داخل شدن به میدان غیر ثابت استفاده مینماید. (برای سمت راست میدان کنترل) که با میزان بالایی از سرخوردگی ترمز و خطر همراه قفل چرخها مشخص میگردد.
دسته بندی | ریاضی |
بازدید ها | 24 |
فرمت فایل | doc |
حجم فایل | 241 کیلو بایت |
تعداد صفحات فایل | 13 |
بی نظمی (chotic)
بی نظمی را با اتفاقی بودن اشتباه نگیرید :
ویژگی های موضوعات اتفاقی :
1-تجدیدنشدنی و غیرقابل تولید دوباره
2-غیرقابل پیشگویی
ویژگیهای سیستم های بی نظم :
1-بیاختیار بودن (مثل حالتهایی که به همان حالتهای نهایی BUT منجر می شود و حالت نهایی برای تغییرات کوچک که با حالت نخستین بسیار متفاوت است)
2-بسیار مشکل یا غیرممکن بودن برای پیشگویی کردن
مطالعه سیستم های بی نظم اکنون یکی از رشته های موردتوجه و محبوب فیزیک است که در این زمینه تا قبل از اینکه کامپیوتر بتواند پاسخگوی مشکلات باشد اطلاعات کمی وجود داشت .
بی نظمی در خیلی از سیستم های فیزیکی دیده می شود برای مثال :
1-دینامیک سیالات (هواشناسی)
2-بعضی واکنشهای شیمیایی
3-لیزرها
4-ماشینهایی که می تواند با سرعت بالا ذره های ابتدایی را بسازد (شتابدهنده ها)
شرایط لازم و ضروری برای سیستم های بی نظم :
1-این سیستم ها دارای 3 متغیر مستقل دینامیکی اند
2-معادلات حرکت یا مسیر حرکت که غیرخطی می باشند
از معادلات یک آونگ که دارای حرکت میرا می باشد برای شرح دادن و ثابت کردن طرحهای بی نظمی استفاده می شود که دارای معادلات حرکت به صورت
می باشد . ما بجای این از یک شکل بدون بعد با معادله
استفاده می کنیم .
متغیرهای دینامیکی در معادله بالا عبارتند از t و و و دوره غیرطولی .
ما قبلاً دیدیم که آونگ فقط برای نمادهای q و و بی نظم است که از این موضوع در مثالهای زیر استفاده می کنیم .
برای مشاهده آغاز بی نظمی (وقتی که کاهش یافته) به مسیر حرکت سیستم در مرحله ای از فضا و فاصله گرفتن ذرات از هم توجه می کنیم که یکدفعه به صورت زودگذر محو می شوند . توجه کنید دوره دو برابر یا مضاعف بدست آمده قبل از آغاز بی نظمی ها است .
حالت منحنی های فضایی که دیدیم دومین مرحله از تمام سه مرحلهی حالتهای فضایی است که به طور کامل آونگ را توصیف می کند . این طرح ها جزئیات پیچیده سطح بی نظم آونگ را پنهان می کنند .
قسمت PoinCare قسمتی از سومین مرحله فضایی در یک قاعده ثابت است . این ها آنالوگهایی برای دیدن پیشرفت حالت فضایی حالت آونگ می باشد که یک قسمتی از یک دوره با نیروی محرک می باشد . تناوب مسیر حرکت در یک مرحله انجام می شود و تناوب مضاعف شدن نیرو و نیز در 2 مرحله انجام می شود .
Attractors : سطوحی که آونگ در حالت حرکت در فضا از آن پیروی می کند و بعد از مسیر زودگذر ضعیف می شود .
یک Attractors در یک آونگ ثابت (بدون بعد حرکت) دارای یک نکته خاصی میباشد که می باشد . یک Attractors تناوب آونگ یک خط منحنی میباشد که در اولین مرحله و سومین مرحله در فضای حرکت می باشد)
Attractor بی نظم گاهی Attractor قوی نامیده می شود که در این حالت اندازه ها بین 2 تا 3 می باشد ( ) .
اندازه و گنجایش یک مربع و خط
به عنوان مثال دستگاه Cantor تشکیل شده توسط پردازش interactive اندازه کسری یک Attractor بی نظم به دلیل حساسیت زیاد آن از حالتهای نخستین می باشد .
توانها Lyapunov اندازه گیری هستند از میزان متوسط واگرایی nigh bouring مسیر گلوله در یک Attractor بدست می آید .
دسته بندی | ریاضی |
بازدید ها | 10 |
فرمت فایل | doc |
حجم فایل | 32 کیلو بایت |
تعداد صفحات فایل | 18 |
فشرده سازی اطلاعات (DATA COMPRESSION )
در این روش ذخیره اطلاعات به شکلی است که فضای کمتری را اشغال کند. این عملکرد در ارتباطات بسیار مهم است ، چرا که این امکان را به تجهیزات می دهد تا همان مقدار اطلاعات را با bit کمتری ذخیره یا منتقل کنند. تکنیک های مختلفی برای انجام اینکار وجود دارد اما تنها چند مورد از آنها استاندارد هستند. CCITT یک تکنیک فشرده سازی اطلاعات برای انتقال فاکس ها استاندارد( Group 3 ) و یک استاندارد فشرده سازی برای تبادل اطلاعات از طریق مودم ها ( CCITT V.42 bis) تعریف نموده است. علاوه براین ، انواع فشرده سازی فایل از قبیل ARC و ZIP نیز وجود دارد. فشرده سازی اطلاعات بطور گسترده ای در برنامه های ایجاد نسخة پشتیبان ، برنامه های صفحه گسترده و سیستم های مدیریت بانک اطلاعاتی نیز استفاده می شود. انواع مختلفی از اطلاعات نظیر تصاویر bit-map را می توان به سایزهای کوچکتر فشرده کرد
Protocol
شکل پذیرفته شده ای برای تبادل ارتباطات میان دو دستگاه است. پروتکل موارد زیر را تعریف می کند :
• روش مورد استفاده برای کنترل خطا
• شیوه فشرده سازی اطلاعات ، درصورت وجود
• شیوة اعلام و نمایش ارسال پیام توسط دستگاه فرستنده
• شیوة اعلام و نمایش دریافت پیام توسط دستگاه گیرنده
برنامه نویسان می توانند انواع مختلفی از پروتکل های استاندارد را انتخاب کنند. هریک از آنها دارای مزایا و معایب مخصوص به خود است ؛ مثلاً برخی از آنها ساده تر ، برخی قابل اطمینان تر و برخی سریعتر هستند. از نقطه نظر کاربر ، تنها جنبه جالب پروتکل ها ، قابلیت برقراری ارتباط کامپیوترشان با سایر کامپیوترها است. پروتکل را می توان در سخت افزار یا نرم افزار بکار برد.
CCITT
خلاصه نام موسسه Comite Consultatif International Telephonique et Telegraphique می باشد که استانداردهای ارتباطی بین المللی را تنظیم می کند. CCITT اکنون بعنوان ITU شناخته شده و استانداردهای مهمی را برای تبادل اطلاعات تعریف کرده است :
• Group 3 : پروتکل جهانی برای ارسال اسناد فاکس از طریق خطوط تلفن است. پروتـــــــکل Group 3 CCITT T.4 را برای فشرده سازی اطلاعات و حداکثر میزان انتقال ( baud9600 ) را مشخص کرده است. دو درجه وضوح تصویر وجود دارد: 203 x 98 و 203 x 196
• Group 4: پروتکلی برای ارسال اسناد فاکس از طریق شبکه های ISDN است. این گروه 400 پروتکل را پشتیبانی می کند که شامل تصاویر با وضوح بیش از dpi 400 می شوند
STAND-ALONE
به دستگاههایی اطلاق می شود که به تنهایی کارکرده و نیاز به تجهیزات دیگر ندارند. مثلاً دستگاه فاکس از این دسته است ؛ چرا که برای کارکردن نیاز ، به کامپیوتر ، چاپگر ، مودم یا سایر تجهیزات ندارد. به همین دلیل نیز چاپگرها STAND-ALONE محسوب نمی شوند چراکه برای فعالیت و تغذیه اطلاعات نیاز به کامپیوتر دارند.
تا آخر سال 2000، یعنی درست 4 سال پس از عرضه دی.وی.دی، مصرفکنندگان، 14 میلیون دستگاه پخش خریده و آن را به پرفروشترین دستگاه الکترونیکی خانگی تبدیل کرده بودند.
امروزه با پیشرفت روزافزون فناوری در دستگاههای الکترونیکی خانگی بخصوص دی.وی.دی، این دستگاه مجهزتر میشود و روزبهروز کاربرد آن رو به افزایش است. مدیر مرکز تحقیقات و توسعه شرکت صنایع نماالکترونیک پیام با اشاره به مطلب فوق افزود: هماکنون دی.وی.دیهای موجود در بازار دارای امکانات متداول هستند.
در حال حاضر این شرکت سعی نموده است. دی.وی.دی را بامشخصات بهتر و امکانات بیشتر در اختیار مصرفکنندگان قرار دهد. این دی.وی.دی در دو مدل DV-3500 و DV-3131 میباشد که فقط از لحاظ ظاهر متفاوت و از لحاظ عملکرد شبیه به هم هستند. این دستگاه مجهز به خروجی VGA برای اتصال به مانیتور برای دریافت تصاویر بهتر است و مجهز به مدار Progresive Scan که روش مدرنی است برای بدست آوردن تصویر مطلوب و با کیفیت، بدین معنا که برخلاف Interlace Scan که اسکن معمولی تصویر است این مدار بصورت اسکن متوالی تصویر برای وضوح بیشتر بکار میرود.
همچنین این دستگاه مجهز به قفل ایمنی دیسکهای درجهبندی شدهاست. همچنین قابلیت کارائوکه(حذف صدای خواننده از روی موسیقی) و ورودی میکروفن و قابلیت پخش دیسکهای عکس و اسلاید با فرمتهای CD/JPEG,Kodak Picture را دارد.
از ویژگیهای دیگر این دستگاه میتوان به حافظه روی دیسک Marking یا علامتگذاری دی.وی.دی و تبدیل سیستم NTSC به پال برای تلویزیونهایی که قابلیت پخش سیستم NTSC را ندارد، اشاره نمود.
همچنین این دی.وی.دی دارای استانداردهای ایمنی و کیفیت از قبیل Class 1 (اشعه لیزر مورد استفاده در این دستگاه نوع ضعیف شده است و در نتیجه خطر تشعشع به بیرون دستگاه وجود ندارد) و دارای نشان CEاست،که نشاندهنده انطباق این دستگاه با استانداردهای کشورهای اروپایی میباشد.
با تنظیم اکولایزر این دستگاه صدای موسیقی Rock-pop-live-Dance-Techno-Classic-Soft را میتوان انتخاب کرد و هنگام اجرای دیسکها حالت مربوط به پخش صدای محیطی را انتخاب نمود.
درپایان برای آشنایی بیشتر خوانندگان با دستگاه دی.وی.دی توضیحی مختصر آمده است:
DVDکه نام کوتاه و متداول دیسک ویدئویی دیجیتال Digital Video Disc و یا دیسک چندمنظوره دیجیتال Digital Versatile Disc میباشد نسل جدید تکنولوژی ذخیره اطلاعات بر روی دیسک نوری بوده و این تکنولوژی قابلیت ذخیره یک فیلم سینمایی بر روی دیسک با کیفیت بالا و صدای عالی و یا ذخیره حجم اطلاعات کامپیوتری بیشتر از CD معمولی را دارد.
دسته بندی | کامپیوتر و IT |
بازدید ها | 12 |
فرمت فایل | doc |
حجم فایل | 45 کیلو بایت |
تعداد صفحات فایل | 28 |
طراحی سیستم های تعبیه شده
خلاصه
بیشتر سیستم های تعبیه شده محدودیت های طراحی متفاوتی نسبت به کاربردهای محاسباتی روزمره دارند. در میان طیف گوناگون این سیستم ها هیچ توصیف اختصاصی کاربرد ندارد. با وجود این،برخی ترکیبات فشار هزینه،احتیاجات بلادرنگ،ملزومات اعتبار،عدم کار فرهنگی؛ طراحی اجرای موفق روشها و ابزار طراحی محاسباتی سنتی را مشکل ساخته است. در بیشتر حالات سیستم های تعبیه شده برای دوره زندگی و عوامل تجاری بهینه سازی می شود تا حاصل کار محاسباتی بیشینه شود. امروزبسط طراحی کامپیوترهای تعبیه شده به طراحی جامع سیستم تعبیه شده حمایت ابزاری کمتری ارد. با وجود این،با آگاهی از نقاط ضعف و قوت رویکردهای جاری می توانیم توقعات را بدرستی بر گزینیم، مناطق خطر را مشخص نماییم و راه هایی که بتوانیم نیازهای صنعتی را برآورده کنیم،ارائه دهیم.
1- مقدمه
های کوچکتر (4،8و16بیتی) CPU تعبیه شده، با CPU درهر سال تقریبا 3 میلیارد
فروخته می شود. باوجود این بیشتر تحقیقات و توسعه ابزار به نظر می رسد که بر احتیاجات روزمره و محاسبات تعبیه شده فضایی/ نظامی تمرکز ارد. این مقال بدنبال این است که بحث هایی را به پیش بکشد تا بازه وسیعی از سیستم های تعبیه شده را دربرگیرد.
تنوع زیاد کاربردهای تعبیه شده ، تعمیم سازی را مشکل می سازد. با این وجود ،علاقه ای به کل ذامنه سیستم های تعبیه شده و طرح های سخت افزاری/ نرم افزاری هست.
این مقاله بدنبال اینست که مناطق اصلی را که سیستم های تعبیه شده را از طرح های کامپیوتری روزمره سنتی متمایز می سازد معین می کند.
مشاهدات این مقاله از تجارب نظامی و تجاری ،روش شناسی توسعه و حمایت دوره زندگی می آید.
تمام توصیفات تلویحا برای اشاره به حالات نمونه ،نماینده یا حدیثیفهمانده شده است. در حالیکه درک می شود که سیستم های تعبیه شده احتیاجات منحصربفرد خودشان را دارند. امید می رود که تعمیم سازی و مثال های ارائه شده در این مقاله پایه ای برای و روش شناسی طرح بشمار آید. CAD بحث و تکامل ابزار های
2- مثال سیستم های تعبیه شده
شکل 1 یک نوع سازمان ممکن برای یک سیستم تعبیه شده را نشان می دهد.
،گوناگونی از میانجی ها وجود دارد تا سیستم را قادرCPUبه علاوه سلسله حافظه و
به سنجش ، اداره و تعامل با محیط خارجی کند. برخی از تفاوت ها با محاسبات روزمره را می توان اینگونه ذکر کرد:
● میانجی بشری می تواند به سادگی یک نور فلاش یا به پیچیدگی یک روبات همه کاره باشد.
● پورت تشخیصی برای تشخیص سیستم کنترل شده نه تشخیص کامپیوتر استفاده می شود.
● زمینه برنامه نویسی همه منظوره ، خواص کاربرد ویا حتی سخت افزار غیر دیجیتال برای افزایش عملکرد و یا ایمنی استفاده می شود.
● نرم افزار عمل ثابتی دارد و کاربرد خاصی می طلبد.
دسته بندی | ریاضی |
بازدید ها | 23 |
فرمت فایل | doc |
حجم فایل | 420 کیلو بایت |
تعداد صفحات فایل | 50 |
مبحث بردارها
بردارها:
تساوی در بردار: موازی، هم جهت و هم طولی دو بردار به تساوی آن دو میانجامد.
مجموع دو بردار : روش متوازی الضلاع
روش مثلثی
خواص بردارها:
شرکتپذیری:
بردار صفر: انتها و ابتدای بردار بر هم منطبق است. و با o نشان میدهیم.
برای هر بردار دلخواه داریم
قرینه برای یک بردار: اگر بردار معلومی باشد برای برداری با همان اندازه و جهت مخالف آن قرنیه نام دارد و با مشان داده میشود.
تفاضل دو بردار: تفاضل دو بردار را بصورت زیر تعریف میکنیم:
تذکر: اگر بردار و اسکالر معلوم باشند حاصلضرب است. یعنی برداری با همان جهت ولی برابر طویلتراز اگر و برداری مختلف الجهت با ولی برابر طویلتر از اگر .
برداریکه: هر برداری به طول واحد را یک برداریکه گوئیم. اگر بردار نا صفر باشد یک بردار یکه است.
زاویه بین دو بردار: منظور از زاویه بین دو بردار ناصفر که با نشانداده میشود یعنی زاویهای که باید بچرخد تا جهتش با جهت یکی شود.
°
°
°
ضرب اسکالر( ضرب نقطهای یا داخلی)
منظور از حاصلضرب اسکالر دو بردار که با نشانداده میشود یعنی عدد:
زاویه بین دو بردار را میتوان از به یا از به سنجید. زیرا و
تذکر: 1.
2.
3. حاصلضرب صفرا ست اگر تنها اگر همچنین بردار صفر بر هر برداری عمود است.
مثال: مثال : اگر خط جهت دار و بردار معلوم باشد منظور از تصویر اسکالر روی L که به صورت نوشته میشود.
یعنی:
بطور کلی با معلوم بودن دو بردار منظور از تصویر اسکالر روی یعنی
قضیه: اگر و آنگاه :
نتیجه:
مثال : اگر بردار آنگاه:
هر برداری در ضرب شود مؤلفه اول بدست میآید و اگر در ضرب شود مؤلفه بدست میآید:
تذکر1:
آنگاه
2.
مثال: و را در صورتیکه با هم زاویه ° 60 بسازند. را بیابید.
ضرب برداری( خارجی)
برداری است که بر صفحه دو بردار عمود است.
منظور از حاصلضرب خارجی دو بردار که با نشان داده میشود یعنی بردار بطوریکه:
1- اندازة C برابر است با:
2- بر صفحه عمود است و در جهت حرکت یک پیچ( راست دست) ک تیغهاش از به باندازه میچرخد نشان داده
تذکر: هرگاه یا یا آنگاه
مساحت متوازیالضلاع ارتفاع قاعده
با توجه به فرمول قبل و شکل بالا نتیجه میگیریم که مساحت متوازیالضلاعی که توسط بردارهای و ساخته میشوند با ضرب خارجی برابر است.
و مساحت مثلث ساخته شده توسط دو بردار قبل نصف مقدرا قبلی است .
مساحت مثلث
تذکر: حاصلضرب خارجی با معکوس شدن و ترتیب بردارهای تغییر علامت میدهد.
مثال هرگاه . بردارهای متعاعد یک، باشند.
تذکر :1
2
3-ضربهای برداری شرکتپذیر نیستند.
قضیه: هرگاه :
آنگاه
مثال: مساحت مثلث به راسهای:
و و را بیابید.
* ضربهای سه تایی از بردارها
حاصلضرب سه تایی را در نظ بگیرید واضح است که:
که درآن مساوی ارتفاع(h) متوازی سطوح پوشیده بوسیلة بردارهای است و چون مساحت قاعده متوازیالضلاع است پس متوازیالضلاع برابر حجم متوازیالسطوح است.
قضیه:هرگاه و ، آنگاه
مثال: ثابت کنید
* صفحه:
یک صفحه بردار ناصفر عمود بر صفحه بطور منحصر بفرد مشخص میشود بردار n قائم بر صفحه نامیده میشود.
قضیه: هر صفحه معادلهای به شکل دارد که در آن A,B,C همگن صفر نیستند بر عکس هر گاه C,B,A همگی صفر نباشند هر معادله به شکل (1) معادله یک صفحه را مشخص میکند.
معادله صفحهای که از نقطة میکند و بردار قائم آن است عبارتست از
مثال: بازای دو نقطه معلوم:
صفحه مابر عمود بر خط گذرنده از رابیابید:
صفحه P به معادله عبارت است از:
مثال: معادله صفحهای و موازی دو بردار و و را محاسبه کنید.
مثال : معادله صفحه گذرنده از نقاط و و عمود بر صفحه باشد را بدست آورید.
N عمود بر صفحه مورد نظر
* خطوط در
خط ما با یک نقطه معلوم روی L و بردار دلخواه موازی L بطور مختصر به فرد مشخص میشود فرض کنید: نقطه دلخواهی در باشد در اینصورت هر گاه باشد یعنی که t یک اسکالر است.
معادلات پارامترهای خط
معادله متعارف خط L
با معادله خطی که از نقطه میگذرد و با بردار u موازی است.
تذکر:
اگر یکی از مخرجهای c,b,a در معادله متعارف صفر باشد صورت نیز باید صفر باشد مثلاَ اگر ، معادله خط بصورت زیر نوشته میشود.
مثال: معادله خط گذرانده از نقطه موازی خط
حل :
مثال:
فصل مشترک دو صفحه
را بدست آورید:
مثال:
معادله خط گذرنده از دو نقطه: ،
حل :
مثال :
ثابت کنید خط: و فصل مشترک صفحات و موازیاند:
و
حل :
بردار فصل مشترک
* توابع برداری:
در این فصل با ترکیب حساب دیفرانسیل انتگرال و بردارها مطالعه حرکت اجسام در فضا میپردازیم برای این منظور مؤلفههای عددی بردار شعاعی از مبدأ تا جسم را توزیع مشتقپذیری از زمن فرض کنیم و به این ترتیب بردارهای جسم را توصیف میکنند بدست میآوریم:
بردار شعاعی
از مبدآ تا نقطه که مکان زیر را در لحظه t از حرکتش در فضا بدست میآوریم.
* مشتق یک تابع برداری:
اگر و و توابعی با مقادیر حقیقی باشند از t باشند و بردار
یک تابع با مقادیر برداری از t باشد بردار مشتق F نسبت به t میباشد مانند حالت حرکت در صفح طول بردار بسرعت، مقدار سرعت جسم و جهت بردار سرعت جهت حرکت است.
مثال: بردار مکان یک جسم متحرک در لحظه t را مشخص میکند.
در مقدار سرعت و جهت ر مشخص کنید در چه لحظهای در صورت وجود سرعت و شتاب جسم بر هم عمودند.
جهت سرعت
در لحظه شتاب و سرعت بر هم عمودند.
* قاعده زنجیرهای:
اگر مکان ذرهای باشد که روی یک مسیر در حرکت است و اگر با قرار دادن تابعی از بجای متغیرها را عوض کنیم مکان ذره تابعی از S میشود داریم:
دسته بندی | ریاضی |
بازدید ها | 17 |
فرمت فایل | doc |
حجم فایل | 94 کیلو بایت |
تعداد صفحات فایل | 23 |
آشنایی با ریاضیات
مقدمه: آشنایی با ساختمان منطقی جمله هایی که مطالب ریاضی بوسیله آنها بیان می شوند مستلزم مفاهیم گزاره، گزاره نما، و اسم نماست. این مفاهیم که بخشی از منطق ریاضی مقدماتی محسوب می شوند می توانند مفاهیم و احکام ریاضی را قابل فهم و قابل توضیح نمایند. در عصر حاضر ایفای نقش منطق ریاضی در توجیه و قابل انتقال نمودن مفاهیم در پیشرفت و تکامل کامپیوتر بر هیچکس پوشیده نیست.
2.1 حساب گزاره ها
1.2.1 تعریف: گزاره جمله ای خبری است که یا راست است یا دروغ اگرچه راست یا دروغ بودن آن معلوم نباشد.
برای هر گزاره یک ارزش راستی یا دروغی یا مختصراً یک ارزش قائل می شویم. مثلاً هر یک از جملات«عدد 3 فرد است»،«عدد 6 زوج است» و« اصم است» گزاره هستند. هر یک از گزاره های اول و دوم راست هستند ولی راست یا دروغ بودن گزاره سوم یا مقدمات کنونی، برایمان معلوم نیست ولی در هر حال یا راست است یا دروغ.گزاره ها بطورکلی به سه دسته تقسیم می شوند: گزاره شخصی، گزاره کلی و گزاره جزئی( یا وجودی) نوع اول گزاره ای است که از شیء معینی خبر می دهد. و در این بخش مورد بحث ماست. نوع دوم و سوم را در بخش آینده تعریف و بررسی خواهیم کرد.
از ترکیب گزاره ها گزاره های مرکب حاصل می شود این عمل با رابطهای گزاره ای امکان پذیر است.
2.2.1 رابطهای گزاره ای: گزارها را با حروف p ، q ،v ،s و یا با حرف اندیس دار نظیر ، ،... نشان می دهیم و هر نوع ترکیبی از آنها با الفاظ زیر که رابطهای گزاره ای نامیده می شوند امکان پذیر است.
«چنین نیست که»،«و»،«یا»،« اگر»،« اگر و فقط اگر»
علایم ~ ، &، ، ( یا )، ( یا ) نیز به ترتیب برای این رابط ها بکار خواهند رفت. اینک به توضیح آنها می پردازیم:
3.2.1 نقیض: اگر Pگزاره ای باشد«چنین نیست کهP» را نقیض P می گوییم و با علامت ~P نشان میدهیم. علامت ~ را ناقص و گزاره ای را که ناقص در آن عمل می کند دامنة عمل ناقص می نامیم. پیداست که اگر گزاره ای راست(دروغ) باشد نقیض آن دورغ( راست) است.
بعنوان مثال نقیض گزاره«6 عدد اول است» گزارة«چنین نیست که 6عدد اول است.» و گزاره«6 عدد اول نیست» خواهد بود.
4.2.1 ترکیب عطفی: اگر pو q دو گزاره باشد گزاره«p,q » را ترکیب عطفی p با q می گوییم و با علامت نشان میدهیم. علامت& را عاطف و p وq را مؤلفه های
عاطف نامیم. ترکیب عطفی فقط و فقط وقتی راست است که هر دو مؤلفه آن گزاره های راستی باشند.
از الفاظی که از نظر منطقی مترادف عاطف است لفظ« ولی= اما» است مثلاً گزاره«6 زوج است ولی اول نیست» به معنی« 6 زوج است و 6اول نیست» خواهد بود که البته گزاره ای راست است.
5.2.1 ترکیب فصلی: اگرp وq دو گزاره باشند گزارة«p یاq » را ترکیب فصلی p با q نامیده به علامت p v q نشان میدهیم. این گزاره فقط و فقط وقتی دروغ است که هردو مؤلفه آن دروغ باشند. توجه کافی به تفاوت این« یا» که یاء منطقی نامیده می شود با لفظ عادی« یا» که در استعمال عادی برای ترکیب گزاره ها بکار میرود مبذول دارید. در استعمال عادی لفظ«یا» گزارة ترکیب شده فقط وفقط وقتی راست است که یکی از مؤلفه ها راست و دیگری دروغ باشد این نوع«یا» را یاء مانع جمع می نامیم.
در منطق لفظ«یا» همواره به معنی منطقی بکار می رود و «یای» مانع جمع را با تکرار لفظ«یا» و نیز با لفظ« الا» مشخص می کنند. مثلاً گزاره های
« یا 5 فرد یا 5ز وج است»
« 5 فرد است والا زوج است»
به یک معنی هستند که مشخص کننده یای مانع جمع است.
6.2.1 ترکیب شرطی: اگر p و q دو گزاره باشند گزارة« اگر p آنگاه q » را ترکیب شرطی p باq می نامیم و آنرا به علامت ( یا ) نشان می دهیم.
در اینجا مؤلفه p مقدم و مؤلفه q تالی گفته می شود . ترکیب شرطی فقط وقتی دروغ است که pگزارة راست و q گزارة دروغ می باشد.
تذکر1: ارزشهای گزارة عطفی و گزاره از ترتیب مؤلفه ها مستقل است ولی ارزش گزارة شرطی چنین نیست، یعنی ممکن است راست ولی دروغ باشد و یا بالعکس دروغ و راست باشد
تذکر 2: بیان ترکیب شرطی« اگر p آنگاه q » در ریاضیات و نیز در زبان عادی به صورت های متنوعی امکان پذیر است که عبارتند از:
اگر p ، q ؛
هرگاه p آنگاه q ؛
در حالتی که p ، q ؛
q اگر p ،
q به شرطی p ؛
P و فقط وقتی که q ؛
P شرط کافی برای q است؛
q شرط لازم برای p است ؛
شرط کافی برای q آن است که p ؛
شرط لازم برای p آن است که q ؛
P مستلزم q است؛
q از p لازم می آید؛
.
7.2.1 ترکیب دو شرطی : گزارة
« اگر p آنگاه q و اگر q آنگاه p » (1)
ترکیب عطفی دو گزارة شرطی و است که می توان آن را به صورت زیر
نوشت:
دسته بندی | ریاضی |
بازدید ها | 20 |
فرمت فایل | doc |
حجم فایل | 111 کیلو بایت |
تعداد صفحات فایل | 22 |
ایده آل های خطی به ترتیب کوهن-مکوالی
چکیده- G را یک نمودار غیرمستقیم ساده n راسی در نظر بگیرید و بگذارید برایده آل خطی مرتبطش دلالت کند. مانشان می دهیم که تمام نمودارهای و تری G ، به ترتیب کوهن- مکوالی هستند ، دلیل ما بر پایه نشان دادن این است که دوگانه الکساندر I(G) ،خطی و ازمولفه است.
نتیجه ما فرضیه فریدی را که می گوید ایده آل درخت ساده شده به ترتیب کوهن- مکوالی، هرزوگ، هیبی، می باشد، وفرضیه ژنگ که می گوید یک نمودار وتری کوهن-مکوالی است اگر و تنها اگر ایده آل خطی اش در هم ریخته نباشد، را تکمیل می کند. ما همچنین ویژگی های دایره های مرتب کوهن- مکوالی را بیان می کنیم و نمونههایی از گراف های مرتب غیروتری کوهن- مکوالی را هم ارائه می کنیم.
1-مقدمه
G را یک گراف ساده n راسی در نظر بگیرید پس G هیچ حلقه یا خطوط چندگانه ای پهن دو راس ندارد.) رئوس ومجموعه های خطی G توسط EG,VG را به ترتیب نشان دهید. ما ایده آل تک جمله ای غیر مربع چهارگانه با K که یک میزان است و جایی که را به G ارتباط می دهیم.ایده ال ایده آل خطی Gنامیده می شود.
توجه اولیه این مقاله ایده آل های خطی گراف های وتری است. یک گراف G وتری است اگر هر دایره طول یک وتر داشته باشد. اینجا اگر ،خطوط یک دایره طول n باشند، ما می گوییم که دایره وری یک وتر دارد اگر دو راس xj,xi در دایره به نحوی وجود داشته باشند که یک خط برای G باشند اما خطی در دایره نباشد.
ما می گوییم که یگ گراف G کوهن –مکوالی است اگر کوهن-مکوالی باشد. چنانکه هرزوگ، هیبی و ژنگ اشاره می کنند، طبقه بندی تمام گراف های کوهن-مکوالی شاید اکنون قابل کشیدن نباشند، این مسئله به سختی طبقه بندی کردن تمام مجموعه های ساده شده کوهن-مکوالی است.]9[.البته هرزوگ، هیبی و ژنگ در ]9[ ثابت کردند که وقتی G یک گراف وتری باشد،پس G در هر میدانی کوهن-مکوالی است اگر وفقط اگر به هم نریخته باشد.
ویژگی کوهن –مکوالی به ترتیب بودن، که شرایطی است ضعیف تر از کوهن-مکوالی بودن، توسط استنلی ]14[ در ارتباط با تئوری قابلیت جدا شدن غیرخالص معرفی شد.
تعریف 1-1- را در نظر بگیرید. یک M معیار B درجه دار کوهن –مکوالی به ترتیب نامیده می شود اگر یک تصفیه معین از معیارهای R درجه بندی وجود داشته باشد.
به نحوی که کوهن –مکوالی باشد، و ابعاد کرول خارج قسمت در حال افزایش باشند:
ما میگوییم یک گراف G کوهن-مکوالی به ترتیب است و در K اگر کوهن-مکوالی به ترتیب باشد. ما می توانیم به نتیجه هرزوگ، هیبی و ژنگ بر سیم البته با استفاده از این تضعیف شرایط کوهن-مکوالی. نتیجه اصلی ما فرضیه زیر است (که مستقل از خاصیت (K) است.
فرضیه 2-1 فرضیه 2-3.تمام گراف های وتری کوهن-مکوالی به ترتیب هستند.
بنابراین حتی گراف های وتری که ایده آل های خطی نشان در هم نریخته نیستند نیز هنوز یک ویژگی جبری را دارا هستند.فرضیه 2-3 همچنین حالت یک بعدی کار فردی در توده های ساده شده ]3[ را نیز عمومیت می بخشد.
مقاله ما به صورت زیر سازمان می یابد. در قسمت بعدی ، ما نتایجی از این ادبیات درباره دوگانگی الکساندر ودرباره گراف های وتری جمع می کنیم. در بخش 3،فرضیه 2.3 را ثابت می کنیم.
ما برخی از گراف های غیروتری در قسمت 4 را که دایره های کوهن-مکوالی را به ترتیب طبقه بندی می کنند بررسی می کنیم و در مورد برخی ازویژگی های گرافهای شامل دایره های –n برای n>3 تحقیق می کنیم.
همچنین شرایط کافی را برای گرافی که نمی تواند کوهن-مکوالی به ترتیب باشد ،ارائه می کنیم.
2-اجزا مورد نیاز
درطول این مقاله، G بر یک گراف ساده روی رئوس n با مجموعه نقطه ای VG ومجموعه خطی EG دلالت می کند. ایده آل خطی ،جایی که را به G مربوط می سازیم.
گراف کامل در رئوس n که بر Kn دلالت شده است،گرافی است با مجموعه خطی ، یعنی گراف این ویژگی را دارد که خطی بین هر جفت رئوس وجود دارد. اگر x نقطه ای در G باشد باید بنویسیم N(x) که بر همسایههای x دلالت کند،یعنی آن رئوسی که خطی را با x شریکند. ما ابتدا باید به حالتی توجه کنیم که G یک گرافی وتری است.گراف های وتری ویژگی زیر را دارند:
لم 21- G,[6,7,12,15] را یک گراف وتری در نظر بگیرید، x را یک زیر نمودار کامل از G در نظر بگیرید.اگر ،پس نقطه ای به نام وجود داردکه زیرگراف به وجود آمده توسط مجموعه همسایه مربوط به x، یک گراف کامل باشد. این امر همچنین زیر نمودار به وجود آمده در را وادار می کند که یک زیر گراف کامل باشد.
یک پوشش راس گراف G یک زیر مجموعه از VG است به نحوی که هر خط G حداقل به یک راس A برخوردار داشته باشد. توجه کنیدکه ما هیچ وقت به داشتن یک راس مجزا در پوشش راس نیاز نداریم.
مثلا ، اگر ما گرافی در سه راس داشته باشیم و تنها خط موجود باشد، پس هر دو پوشش های راس هستند. پوشش های راس یک گراف G به دو گانه الکساندر مربوطند.
تعریف 2-2- I را یک ایده آل تک جمله ای غیرمربع در نظر بگیرید. دوگانه الکساندر غیرمربع ایده آل
است.
پس نتیجه ساده ای گرفته می شود:
لم 3-2- G را یک گراف ساده با ایده آل خطی در نظر بگیرید.پس
یک پوشش راس برای G است.
یک تجزیه درجه بندی شده آزاد حداقل به هر ایده آل همگون I از R مرتبط است.
که در آن R(j) بر معیار R به دست آمده از تغییر درجات R توسط j دلالت می کند.
دسته بندی | ریاضی |
بازدید ها | 7 |
فرمت فایل | doc |
حجم فایل | 176 کیلو بایت |
تعداد صفحات فایل | 25 |
الگوریتم STR کلی (تعمیم یافته)
داده ها: پارامتر d مرتبه رگولاتور یعنی درجه R* ، و درجه S* را بدانیم. چند مجموعه ای روبتگر Ao* به جای چند جمله ای C* که نامعلوم است (تقریب C*)
چند جمله ایهای پایدار P* و Q*
سیگنالهای فیلتر شده زیر بایستی معرفی شوند:
گام 1 : تخمین ضرایب R* و S* بروش LS:
( C* : note)
گام 2 : سیگنال کنترل را از روی محاسبه می کنیم
تکرار گامهای فوق در هر پریود نمونه برداری
در صورت همگرایی تخمین : S* و R* گام بعدی با قبلی برابر است)
=
ویا:
فرم کلی در صورت عدم حذف همه صفرهای فرآیند
اتحاد (2) به شکل زیر نوشته می شود:
C*Q*=A*P*R'*+q-dB-*S* R'* از این رابطه بدست می آید.
و سیگنال کنترل می شود:
کنترل فید فوردوارد (پیشخور) – STR (دانستن دینامیک فرایند لازم است)کنترل پیشخور برای کاهش یا حذف اغتشاش معلوم بکار می رود. خود سیگنال فرمان می تواند برای STR ، یک اغتشاش معلوم فرض شود
مثالهایی از اغتشاش قابل اندازه گیری (معلوم): درجه حرارت و غلظت در فرایندهای شیمیایی درجه حرارت خارجی در کنترل آب و هوا – ضخامت کاغذ در سیستمهای milling machinc
مدل فرضی :
چند جمله ایهای ، S* و T* بایستی تخمین زده شوند و آنگاه:
مثال : تاثیر فیلتر کردن (همان فرایند مثالهای قبل را در نظر بگیرید) {رفتار الگوریتم تصمیم یافته توضیح داده می شود}
Y(t)+ay(t-1)=bu(t-1)+e(t)+ce(t-1)
مقادیر واقعی پارامتر : a = -0.9 ,b=3 , c=-0.3
فیلترها را بصورت زیر در نظر بگیرید
اتحاد: C * Q*=A*P*R'*+q-dB-*S*
در این مثال : از مدل فرآیند داریم
اتحاد
قانون کنترل:
R*P*=R'*P*B+*
فیلتر باید پیش فاز باشد که در نتیجه سیستم حلقه بسته بصورت پایین گذر فیلتر خواهد شد.
سئوال P1 و q1 را چگونه انتخاب کنیم؟
جواب: یک روش انتخاب بررسی اثر آنها بر روی واریانس y و u است. فرض کنید e(t) دارای واریانس 1 است.
حالت (a): no filtering P"q1=0
این حالت همان وضعیت کنترل حداقل واریانس است بدون هیچگونه فیلتر کردن .
حالت q1=-0.3 p1=0(b)
سه مبدا
الگوریتم STR کلی( تعمیم یافته):
داده ها: پارامترd، مرتبه رگولاتور یعنی درجه و درجه را بدانیم. چند جمله ای رویتگر ( بجای چند جمله ای که نامعلق است
( تقریب ) و چند جمله ای پایدار و سیگنالهای فیلترشده زیر بایستی معرفی شوند:
و
گام 1: تخمین ضرایب و به روش LS:
) Note: )
گام 2: سیگنال کنترل را از روی محاسبه می کنیم.
تکرار گامهای فوق در هر پریود نمونه برداری:
( گام بعدی با قبلی برابر است)
در صورت همگرایی تخمین:
و یا
فرم کلی در صورت عدم حذف همه صفرهای فرآیند اتحاد(2) به شکل زیر نوشته می شود: از این رابطه بدست می آید:
و سیگنال کنتر ل می شود ( مثال در پائین آمده نحوه انتخاب P,Q فیلتر ) کنترل فیدفور وارد( پیشخور)STR-( دانستن دینامیک فرآیند لازم است)
کنترل پیشخوری برای کاهش یا حذف اغتشاش معلوم بکار می رود. خود سیگنال فرمان می تواند برای STR ، یک اغتشاش معلوم فرض شود.
( مثالهایی از اغتشاش قابل اندازه گیری(معلوم): در جه حرارت و غلظت در فرآیندهای شیمیایی در جه حرارت خارجی در کنترل آب و هوا- مشخصات کاغذ در سیستمهایmilling machine ).
مدل فرضی:
اغتشاش معلوم
چند جمله ایهای و و بایستی تخمین زده شود و آنگاه:
مثال: تأثیر فیلتر کردن( همان فرآیندهای مثالهای قبل را در نظر بگیرید) (رفتار الگوریتم تعمیم یافته توضیح داده می شود.)
مقادیر پارامتر: ، ،
دسته بندی | ریاضی |
بازدید ها | 24 |
فرمت فایل | doc |
حجم فایل | 48 کیلو بایت |
تعداد صفحات فایل | 10 |
تاریخچه اندازه گیری در جهان
سابقه اندازه گیری به عهد باستان باز می گردد و می توان آن را به عنوان یکی از قدیمی ترین علوم به حساب آورد .
در اوایل قرن 18 جیمز وات (JAMES WATT) مخترع اسکاتلندی پیشنهاد نمود تا دانشمندان جهان دور هم جمع شده یک سیستم جهانی واحد برای اندازه گیریها به وجود آورند . به دنبال این پیشنهاد گروهی از دانشمندان فرانسوی برای به وجود آوردن سیستم متریک (METRIC SYS) وارد عمل شدند .
سیستم پایه ای را که دارای دو استاندارد یکی «متر» برای واحد طول و دیگری «کیلوگرم» برای وزن بوده ، به وجود آوردند . در این زمان ثانیه (SECOND) را به عنوان استاندارد زمان (TIME) و ترموسانتیگراد را به عنوان استاندارد درجه حرارت مورد استفاده قرار می دادند .
در سال 1875 میلادی دانشمندان و متخصصات جهان در پاریس برای امضاء قراردادی به نام پیمان جهانی متریک (INTERNATIONAL METRIC COMVENTION) دور هم گرد آمدند . این قرارداد زمینه را برای ایجاد یک دفتر بین المللی اوزان و مقیاسها در سورز (SEVRES) فرانسه آماده کرد. این مؤسسه هنوز به عنوان یک منبع و مرجع جهانی استاندارد پابرجاست .
امروزه سازندگان دستگاههای مدرن آمریکایی ، دقت عمل استانداردهای اصلی خود را که برای کالیبراسیون دستگاه های اندازه گیری خود به کار می برند ، به استناد دفتر
استانداردهای ملی (N.B.S)تعیین می نمایند .
لازم به یادآوری است دستگاه های اندازه گیری و آزمون به دلایل گوناگون از جمله فرسایش ، لقی و میزان استفاده ، انحرافاتی را نسبت به وضعیت تنظیم شده قبلی نشان می دهند .
هدف کالیبراسیون اندازه گیری مقدار انحراف مذکور در مقایسه با استانداردهای سطوح بالاتر و همچنین دستگاه در محدوده «تلرانس» اصلی خود می باشد .
تعریف اندازه گیری :
اندازه گیری یعنی تعیین یک کمیت مجهول با استفاده از یک کمیت معلوم و یا مجموعهای از عملیات ، با هدف تعیین نمودن تعداد یک کمیت .
صحت :
نزدیکی نتیجه انداره گیری یک کمیت را با میزان واقعی آن کمیت گویند ، این مقدار به صورت درصدی از ظرفیت کلی دستگاه می باشد .
رواداری :
حداکثر انحراف یک قطعه ساخته شده از اندازه خاص خودش را گویند .
دقت :
نزدیکی میزان تفاوت نتایج حاصل از چند اندازه گیری متوالی را مشخص می نماید . دقت دستگاه دلالت بر صحت دستگاه ندارد .
تکرارپذیری :
نزدیکی مقدار خروجیهای یک دستگاه در شرایطی که مقدار ورودی به دستگاه ، روش اندازه گیری شخص اندازه گیرنده ، دستگاه اندازه گیری ، محل انجام کار ، شرایط محیطی یکسان باشد .
دامنه و میزان تغییرات :
حداقل و حداکثر ظرفیت اندازه گیری یک دستگاه را محدوده آن دستگاه گویند .
خطای ثابت :
خطایی که به طور ثابت که در تمام مراحل دامنه اندازه گیری با دستگاه همراه می باشد که این خطا با کالیبره کردن دستگاه برطرف خواهد شد.
خطای مطلق :
نتیجه اندازه گیری یک دستگاه منهای مقدار واقعی اندازه برداشت شده را گویند .
تصحیح :
مقدار عددی که به نتیجه تصحیح نشده یک اندازه گیری افزوده می شود تا یک خطای سیستماتیک فرضی را جبران نماید .
منابع خطای اندازه گیری :
تمام پارامترهای مراحل تولید و مشخصات نهایی تولید بایستی به منظور رعایت صحت استاندارد به وسیله Q.C ارزیابی شوند . طراح سیستم اندازه گیری بایستی روشی را اتخاذ نماید تا میزان خطا در خروجی دستگاهها کاهش یابد و حداکثر خطای باقی مانده شناسایی شوند .
خطاهای ناشی از دستگاه اندازه گیری :
عیوب باطنی دستگاه
استفاده غیرصحیح از دستگاه
اثرات بارگذاری دستگاه
خطاهای ناشی از مشاهده در اندازه گیری :
این نوع خطا شامل وضعیت های مختلف در هنگام خواندن دستگاه نشان دهنده با زوایای مختلف می باشد .
دسته بندی | روانشناسی و علوم تربیتی |
بازدید ها | 7 |
فرمت فایل | doc |
حجم فایل | 89 کیلو بایت |
تعداد صفحات فایل | 69 |
بررسی ویژگی های اجتماعی ، اقتصادی، فرهنگی دانش آموزان دخترانه کرج با سابقه شکست تحصیلی
مقدمه:
شکست تحصیلی و خسارتهای ناشی از آن یکی از نقایص آموزشی بسیاری از کشورهای جهان سوم، و از آن جمله کشور ایران است .
کودکان ما ارزشمندترین سرمایه جامعه ، ظریف ترین و گرانبهاترین هدیه ای هستند که خداوند به عنوان امانت به ما سپرده است و از وظایف جامعۀ دست اندر کاران تعلیم تربیت کشور اسلامی است که از طریق مطلوبترین روشها و انسانی ترین رفتار کودکان جامعه (آینده سازان) را هدایت کنند در این راستا خانواده در آموزش و پرورش به عنوان محور و پایه اصلی می توانند انجام وظیفه کنند.
روشها و طرحهای متعدد برای همکاری پدر و مادرها با فرزندان وجود دارد که در شرایط مختلف به فراخور مال والدین قابل اجرا و بهره برداری می باشند میزان تصمیمات تراکم شغلی ، موقعیت اقتصادی ، اجتماعی پدر و مادرها از جمله عوامل تعیین کننده ای هستند که حدود و پیشرفت تحصیلی دانش آموزان را مشخص می سازند.
چکیده تحقیق :
علل و عوامل متعددی باعث ایجاد افت تحصیلی می شود که می توان آنها را به علل و عوامل خارجی و داخلی نظام آموزش و پرورش تقسیم کرد از آنجا که این عوامل تأثیر متقابل بر روی هم دارند نمی توانند جداگانه مورد تجزیه و تحلیل قرار گیرند ولی برای بهتر شناخته شدن این علل و عوامل و به منظور انجام یک تحقیق دقیق یک محدوده زمانی کوتاه ناگزیر به انتخاب یک بعد از علل و و عوامل ( یعنی علل و عوامل خارجی) افت تحصیلی شده این اهدافی که مورد بررسی و مطالعه قرار می گیرند عبارتند از:
اهداف کلی : هدف کلی این تحقیق ارائه پیشنهادات بر اساس نتایج بدست آمده جهت کاهش افت تحصیلی است
اهداف ویژه : هدف ویژه بررسی و شناسایی ویژگیهای اجتماعی ، اقتصادی و فرهنگی دانش آموزان دختر سال سوم راهنمایی دارای افت تحصیلی
موضوع: بررسی ویژگیهای اجتماعی ، اقتصادی، فرهنگی دانش آموزان دخترانه کرج با سابقه شکست تحصیلی
در رابطه با سوالات فوق الذکر 100 نفر از دانش آموزان دختر سال سوم راهنمایی فروردین که این تعداد از مدرسه راهنمایی از طریق نمونه گیری خوشه ای تصادفی انتخاب شدند و پرسشنامه 20 سوال در بین آنها توزیع گردیده است.
با توجه به توضیحات نتایج ذیل در این تحقیق به دست آمده است.
1- اکثر دانش آموزان مردود در خانواده هایی با سطح پایین اقتصادی زندگی می کردند.
2- اکثریت دانش آموزان مردود با سطح پایین اجتماعی و فرهنگی پایین قرار دارند.
3- اکثریت دانش آموزان مردود برنامه ریزی صحیحی جهت گذراندن اوقات فراغت خود ندارند.
4- اکثریت دانش آموزان مردود دوستان بی تفاوت نسبت به تحصیل ، اهل تفریح و یا ترک تحصیل کرده دارند.
بیان مسئله :
همگام با پیشرفت و افزایش سرانه آموزش و پروش نیز درمان افزایش است . مسلما هر جامعه ای که برای تعلیم و تربیت سرمایه گذاری می کند انتظار دارد که محصولی در راستای هدف نظام آموزش و پرورش بدست آورد تا این سرمایه گذاری عظیم از طریق تربیت انسانی جوابگوی احتیاجات جامعه گردد.
در این تحقیق تأثیر عوامل اقتصادی ، اجتماعی و فرهنگی مدارس مورد بررسی قرار می گیرد و در مورد مسائلی مثل فقر و محرومیت اقتصادی، نا مناسب بودن مکان زندگی نگرش والدین نسبت به تحصیل فرزندان توفیقاتی داده شده است.
فصل اول
معرفی تحقیق
تعریف موضوع تحقیق
ضرورت تحقیق
فایده تحقیق
اهداف کلی و ویژه تحقیق
محدودیت های تحقیق
تعریف واژه ها و اصطلاحات
معرفی تحقیق:
شکست تحصیلی و خسارتهای ناشی از آن یکی از نقایص آموزشی بسیاری از کشورهای جهان سوم، و از آن جمله کشور ایران است این مسئله به عوامل و موجبات گوناگون مربوط می شود که برای چاره جویی باید آنها را به دقت شناسایی و ارزشیابی کرد.
برخی از اقتصاد دانان معتقدند در بسیاری از کشورهای در حال توسعه آموزش رسمی بزرگترین صنعت و بزرگترین مصرف کننده درآمدهای عمومی است قراین و شواهد حکایت از آن دارد که کشور ما به علت تمرکز بیش از حد تصمیم گیری در نظام اداری و اجرایی ناسازگار بودن توان آموزش و پرورش با مقتضیات و نیازهای اقتصادی و اجتماعی کشور نیز رشد فزاینده تعداد دانش آموزان که از رشد سریع جمعیت سرچشمه می گیرد و سبب افزایش حجم مسئولیت دستگاه اجرایی آموزش و پرورش می گردد. مجموع شرایطی که با کمیت قلت بازدهی این صنعت یعنی خسارات اقتصادی ناشی از شکست تحصیلی می شود تشدید می گردد.
در این رابطه وضعیت اقتصادی و اجتماعی و فرهنگی خانواده دانش آموزان چگونگی گذراندن اوقات فراغت دانش آموزان و برنامه ریزی در جهت آن و گروه دوستان دانش آموزان را به عنوان ویژگیهای مردودین مورد توجه قرار دادیم.
امید است شناخت ویژگیهای مذکور در بررسی همه جانبه و ارائه پیشنهادات دستیابی به نتایج بتواند مسئولان و دست اندرکاران و برنامه ریزان جامعه آموزش و پرورش را به راه حلها رهنمون گردد.
تعریف موضوع تحقیق
موضوع مورد مطالعه در این تحقیق بررسی ویژگیهای اجتماعی و اقتصادی دانش آموزان
ویژگیهای اجتماعی ، اقتصادی و فرهنگی که در این تحقیق مد نظر است عبارتست از :
درآمد خانواده ، شغل خانواده ، تحصیلات والدین ، اشتغال دانش آموزان، وضعیت مسکن ، نحوه گذراندن اوقات فراغت دانش آموزان نقش دوستان ، رفتار والدین با دانش آموزان ، رفتار اعضای خانواده با دانش آموزان این تحقیق در صدد است که ویژگیهای اجتماعی، اقتصادی و فرهنگی دانش آموزان دختری که سابقه افت تحصیلی دارند را بررسی کند.
از افت تحصیلی تعاریف متعددی در کتابها ذکر شده است اما آنچه در تحقیق از این مفهوم مد نظر است مترادف دانستن آن با مفهوم پایه تکرار تحصیلی است .
در ذیل به چند تا از تعاریف افت تحصیلی اشاره می شود.
1- در تعریفی منظور از افت تحصیلی یا تکرار پایه تحصیلی عبارتست از تکرار پایه یک کلاس برای دانش آموزان که در معدل یک سال تحصیلی در همان کلاس پایه ای که در سال قبل به سر می برده به تحصیل ادامه می دهد و همان کاری را انجام می دهد که در سال گذشته نیز انجام داده است.
2- در تعریف دیگری منظور افت تحصیلی تکرار پایه تحصیلی بدین صورت بیان شده است که در نظامهای آموزشی که ارتقا از یک پایه به پایه دیگر از نظر سابقه و پیشرفت تحصیلی اجرا شرایط خاص پیش بینی شده در مقررات امتحانی را ایجاب می کند عدم توفیق گروهی از دانش آموزان در امتحان تکرار پایه و اتلاف ناشی از آنرا پدید می آورد.
فهرست:
مقدمه
چکیده تحقیق
بیان مسئله
فصل اول
تعریف موضوع تحقیق
ضرورت تحقیق
فایده تحقیق
اهداف کلی و ویژه تحقیق
محدودیت های تحقیق
تعریف واژه ها و اصطلاحات
- شرایط و عوامل اقتصادی
الف - فقرو محدودیت اقتصادی
ب- نامناسب بودن مکان زندگی
ج- نامناسب بودن امکانات بهداشتی
د-کارکردن کودکان
2- شرایط و عوامل فرهنگی واجتماعی
الف- فرهنگ و رابطه آن با آموزش و پرورش
ب- تفاوت زبان و فرهنگ بومی با زبان و فرهنگ عمومی
ج- نگرش محیط و خانواده نسبت به تربیت کودکان از نظر جنسیت آنها
3- شرایط عواملی خانوادگی
4- محدودیتهای محلی و جغرافیایی و توزیع نامناسب امکانات آموزشی
تحقیقات انجام شده پیرامون موضوع تحقیق
- روش تحقیق
- جامعه آماری
- نمونه آماری
- شیوه های جمع آوری اطلاعات و روش تجزیه و تحلیل اطلاعات
-جداول یافته های جامعه از پرسشنامه های دانش آموزان
-تحلیل یافته های دانش آموزان
دسته بندی | ریاضی |
بازدید ها | 17 |
فرمت فایل | doc |
حجم فایل | 77 کیلو بایت |
تعداد صفحات فایل | 16 |
برنامه خطی اعداد صحیح دوتایی (BILP)
یک مورد خاص ILP زمانی اتفاق می افتد که همه متغیرهای نمونه بتوانند فقط یک یا دو رقم 0 یا 1 را قبول کنند . چنین متغیرهایی متغیرهای دوتایی نامیده می شوند ، و نمونه ها ، برنامه ها ، برنامه های 1-0 یا برنامه های خطی اعداد صحیح دو تایی (BILPS) نامیده می شوند . هر حالتی که بتواند با بله / نه ، (خوب / بد) یا 0/1 نمونهبرداری شود به عنوان متغیردوتایی شناخته می شود . در زیر نمونه های زیادی از متغیرهای دوتایی ذکر شده که ممکن است در طرح تجاری یافت شود :
، اگر یک طرح مراقبت سلامتی جدید پذیرفته شود .
، اگر پذیرفته نشود .
، اگر مجلس خط B برای تولید نمونه های کولس به کار رود .
، اگر به کار نرود .
، اگر یک ایستگاه پلیس جدید در پایین شهر شناخته شود .
، اگر ساخته نشود .
، اگر تولید یک اجناس به عنوان نوع «خوب» قابل قبول باشد .
، اگر به این صورت نباشد .
، اگر بزرگراه 50 ، در سفر بین ددو شهر به کار رود .
، اگر به این صورت نباشد .
، اگر محدودیت خاصی باشد .
، اگر آن محدودیت نیاز نباشد .
، اگر یک گیاه جدید در گاری هندوستان پرورش یابد .
، اگر به این صورت نباشد .
، اگر سومین انتقال به کار رود .
، اگر به این صورت نباشد .
همانطور که این مثالها نشان می دهند ، خیلی ساده است که متغیر دوتایی را به عنوان یک تحقیق در نظر می گیریم یعنی این که این تحقیق قبول شده ، یعنی این تحقیق قبول نشده است . با تفاسیر داده شده در مورد متغیرها ، اکنون ما چند نوع اجبار را مورد آزمایش قرار می دهیم ، که تحت بررسی شورای شهر در «سالم اورگون» می باشد .
شورای شهر سالم :
در آخرین جلسه مالیاتی سال ، شورای شهر «سالم» ، طرح هایی مختص سرمایه باقی مانده در بودجه یک سال ارائه کرده است . نه تحقیق تحت بررسی کامل یک سال قرار گرفته اند . برای آمارگیری حمایت مردم از تحقیق های مختلف ، پرسشنامه هایی به طور تصادفی به رای دهندگان در کل شهر فرستاده می شود و از آنها خواسته می شود که تحقیق ها را به ترتیب از خوب به بد طبقه بندی کنند . ( بالاترین تقدم ، پایین ترین تقدم ) شورا امتیازها را بر اساس 500 پاسخی که دریافت می کند تطبیق می دهد .با این وجود هیئت شورا مکرراً متذکر می شود که تنها به نتایج پرسشنامهها اکتفا نمی کند . آنها در حالیکه تخصیص های بودجه را تهیه می کنند ، مسائل دیگر را هم محاسبه می کنند . برای تخمین هزینه هر تحقیق ، میزان تخمینی ثابت هر شغل جدید باید فراهم شده ، و تطبیق امتیاز پرسشنامه ها در جدول 3-5 خلاصه شده است.
هدف هیئت شورا بالا بردن حمایت کل رای دهندگان دریافت شده (داشتن پرسشنامه به عنوان مدرک) و دادن محدودیت ها و مطالب قابل توجه دیگر هیئت شورا می باشد که به شرح زیر است :
• 900.000 دلار باقیمانده در صندوق
• نیازهای هیئت شورا برای ایجاد حداقل 10 شغل جدید .
• با وجودیکه جلوگیری از جنایت ، برای مردم از اهمیت بیشتری برخوردار است ، هیئت شورا برای بخش های دیگر خدمات مردم باید به خوبی عمل کند . بنابراین امید می رود که در بیشتر تحقیق های مربوط پلیس سرمایه گذاری شود .
• هیئت شورا مایل است که تعداد وسایل نقلیه اضطراری شهر را افزایش دهد ولی اکنون با توجه به مطالب دیگر ، فقط یکی از دو تحقیق در مورد وسایل نقلیه اضطراری باید سرمایه گذاری کند . پس دو ماشین پلیس و دو ماشین آتش نشانی هم باید خریداری شود .
• هیئت شورا معتقد است در صورتیکه تصمیم بگیرد نزولهای سرمایه را از برنامههای ورزشی در مدارس برگرداند ، نزولهای سرمایه از برنامه های موسیقی هم باید برگردانده شوند و برعکس .
• با عقد قرارداد ، هر سرمایه اضافی مدرسه قبل از اینکه تحقیقات جدید مدرسه انجام شود باید به نزولهای قبلی برگردانده شود . بنابراین هم سرمایه های ورزشی و هم سرمایه های موسیقی قبل از اینکه تجهیزات جدید کامپیوتر خریداری شود ، باید برگردانده شوند . هر چند برگرداندن سرمایه های ورزشی و موسیقی ، دلالت بر این ندارد که کامپیوترهای جدید خریداری خواهند شد . هیئت شو.را هم مایل است به مردم مسائلی از لحاظ مالی نسبت به آنها مسئول است را ارائه دهد . مثل مسائل مربوط به سلامتی ، علائق در رشد مشاغل و نیازهای تحصیلی شهر «سالم».
برای نشان دادن مسئولیت پذیری مالی :
• هیئت شورا مایل است حداقل 250.000 دلار به بودجه سال بعدی انتقال دهد . بنابراین برای بقیه سال حداکثر اینقدر باقی می ماند :
• 650.000$ = 250.000$ - 900.000$ .
برای نشان دادن ارتباط بین سلامت عموم :
• هیئت شورا مایل است حداقل در سه تحقیق آتش سوزی و پلیسی سرمایه گذاری کند .
• آنها امیدوارند هفت افسر پلیس جدید اضافه کنند .
برای نشان دادن علائق در رشد مشاغل :
• هیئت شورا مایل است حداقل 15 شغل جدید تمام وقت فراهم آورد .
برای اثبات حساسیت مطالب تحصیلی :
• هیئت شورا مایل است که در هر سه تحقیق تحصیلی سرمایه گذاری کند .
اعضای هیئت شورا تشخیص می دهند که سرمایه کافی برای تحقق این پنج هدف موجود نمی باشد ، ولی آنها احساس می کند که اگر حداقل سه تحقیق از پنج تحقیق قابل قبول باشد ، رای دهندگان با نظر مساعدی به آن توجه می کنند .
راه حل
هیئت شورای شهر سالم باید تحقیق هایی را برای سرمایه گذاری انتخاب کنند . هدفش تشخیص ارتباطات و محدودیت هایی است که قبلاً ذکر شده است . یک سری تحقیق هایی که حمایت عموم مردم را از طریق پرسش نامه های داده شده ، بالا میبرند .
دسته بندی | ریاضی |
بازدید ها | 17 |
فرمت فایل | doc |
حجم فایل | 122 کیلو بایت |
تعداد صفحات فایل | 86 |
کلیاتی در مورد ریاضیات
تاریخچه
انسان اولیه نسبت به اعداد بیگانه بود وشمارش اشیاء اطراف خود را به حسب غریزه یعنی همان طور که مرغ خانگی تعداد جوجه هایش را میداند انجام میداد اما به زودی مجبور شد وسیله ی شمارش دقیق تری به وجود اورد لذا به کمک انگشتان دست دستگاه شمارش جدیدیپدید اورد که مبنای ان شصت بود .این دستگاه شمار که بسیار پیچیده میباشدقدیمی ترین دستگاه شماری است که اثاری از ان در کهن ترین مدارک موجود یعنی نوشته های سومری مشاهده میشود.سومری ها که تمدنشان مربوط به هزار سال قبل از میلاد مسیح در جنوب بین النهرین یعنی ناحیه بین دو رود دجله وفرات ساکن بودند .ان ها در حدود ۲۵۰۰ سال قبل از میلاد با امپراتوری سامی اکاد متحد شدند وتمدن آشوری را پدید اوردند درز این موقع مصری ها نیز در سواحل سفلای رود نیل تمدن درخشانی پدید اوردنده بودند.طغیان رود نیل هر ساله حدود زمینهای زراعتی این قوم را محو میکرد احتیاج به تقسیم مجدد این اراضی رهبری انها به اولین احکام ساده هندسی گردیدهمچنین مبادلات تجاری وتعیین مقدار باج وخراج سالیانه ان ها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها والواحی است که در نتیجه حفاریهای به دست امده وبه خط هیرو گلیفی می باشند به دست آمده.قدیمی ترین انها که مربوط به ۱۸۰۰ سال قبل از میلاد است شامل چند رساله درباره ی علم حساب ومسایل حساب مقدماتی میباشد از آن جمله رساله پاپیروس آهمس است که در سال ۱۸۶۸ توسط ایسنلر مصر شناس مشهور ترجمه شد .سلیر تمدنهای شرقی نظیر چینی وهندی نقش موثری نداشتند جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماورا الطبیه خرد شده است.
قریب هزار سال پس از نابودی فرهنگ قدیم مصر ومحو تمدن عاشور یونانیان از روی مقدمات پراکنده وبی شکل آنها علمی پدید اوردند که در واقع به عالی ترین وجه مرتب ومنظم گردیده وعقل ومنطق را کاملا اقناع نمودند نخستین دانشمند یونانی طالس ملطسی(۶۳۹-۵۴۸) قبل از میلاد است که در پیدایش علوم نقش مهمی به عهده داشت ومیتوان وی را موجد علوم فیزیک نجوم وهندسه دانست.لیکن انتساب تئوری بسیار مهم هندسی تشابه به او کاملا بی اساس است.در اوایل قرن ششم قبل از میلاد فیثاغورس از اهالی ساموس یونان کم کم ریاضیات را بر پایه واساس محکم قرار داد وبه ایجاد مکتب فلسفی خویش همت گماشت .فیثاغورسیان عدد را به خاطر هم آهنگی ونظمی که دارد اساس ومبدا همه چیز میپنداشتند وبراین عقیده بودند که تمام مفاهیم را به کمک آن میتوان بیان نمود.
پس از فیثاغورس باید از زنون فیلسوف وریاضیدان یونانی که ۴۹۰ قبل از میلاد در ایلیا متولد شده است نام برده شود در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس قضایای متفرق آن زمان را گرد اوری کرد ودر حقیقت همین قضایا است که مبانی هندسه ی جدید ما را تشکیل می دهد.
در قرن چهارم قبل از میلاد افلاطون در باغ اکادموس(آکادمی از همین نام گرفته شده )در آتن مکتبی ایجاد کرد که ۹ قرن بعد از او نیز هم چنان بر پا ماند .وی ریاضیات مخصوصا هندسه را بسیار عزیز می داشت تا جایی که بر سر در مکتب خود این جمله را حک کرده بود(هر کسی هندسه نمی داند وارد نشود) این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت.
انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجههایش را میداند انجام میداد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده میباشد قدیمیترین دستگاه شماری است که آثاری از آن در کهنترین مدارک موجود یعنی نوشتههای سومری مشاهده میشود.
سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بینالنهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.
در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمینهای زراعتی این قوم را محو میکرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام سادة هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی میباشد. قدیمیترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله دربارة علم حساب و مسائل حساب مقدماتی میباشد، از آن جمله رسالة پاپیروس آهس است که درسال 1868 توسط ایسنلر مصرشناس مشهور ترجمه شد. سایر تمدنهای شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشتهاند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست.
قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آَشور، یونانیان از روی مقدمات پراکنده و بیشکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع مینمود.
نخستین دانشمند معروف یونانی طالس ملطلی (639_548ق.م) است که در پیدایش علوم نقش مهمی بعهده داشته و میتوان ویرا موجد علوم فیزیک ، نجوم و هندسه «تشابه» به او کاملاً بیاساس است.
در اوایل قرن ششم ق.م. فیثاغورث (572_500 قبل از میلاد) از اهالی ساموس یونان کمکم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورثیان عدد را بخاطر همآهنگی و نظمی که دارد اساس ومبدأ همه چیز میپنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن میتوان بیان نمود.
پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490ق.م در ایلیا متولد شده است نام ببریم.
در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس فضاهایی متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسة جدید ما را تشکیل میدهند.
در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعداز او نیز همچنان برپا ماند. وی ریاضیات مخصوصاً هندسه را بسیار عزیز میداشت، تا جائی که بر سردر مکتب خود این جمله را حک کرده بود: «هرکس هندسه نمیداند به اینجا قدم نگذارد». این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضیدان معاصر وی ادوکس با ایجاد تئوری نسبتها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیر عادی ندارد و میتوان مانند سایر اعداد قواعد حساب را در مورد آنها بکار برد.
در این احوال اسکندر کشورها را یکی پس از دیگری فتح میکرد و هرجا را که بر روی آن انگشت مینهاد مرکزی از برای پیشرفت تمدن یونانی میشد.
پس از مرگ این فاتح مقتدر در 323ق.م و تقسیم امپراطوری عظیم او، مصر بدست بطلیموس افتاد و امپراطوری بطالسه را تشکیل داد. بطالسه که اسکندریه را به پایتختی برگزیده بودند تمام دانشمندان را بدانجا پذیرفتند و همین دانشمندان در صدد ایجادکتابخانة بزرگی در این شهر ساحلی برآمدند و به توسعه و تکمیل آن همت گماشتند.
اکنون به زمانی رسیدهایم که بایستی آنرا عصر طلائی ریاضیات یونان نامید. اهمیت فوقالعاده این دوره به سبب ظهور سه عالم بزرگ ریاضی یعنی اقلیدس ، ارشمیدس و آپولونیوس است که هم در دوران خود و هم برای قرون بعد از خویش شهرتی عالمگیر کسب نمودند.
در قرن دوم ق.م نام تنها ریاضیدانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود. این ریاضیدان و منجم بزرگ که بین سالهای 161تا 126ق.م در رودس متولد شد گامهای بلند و استادانهای در علم نجوم برداشت و مثلثات را نیز اختراع کرد.
هیپارک نخستین کسی بود که تقسیمبندی معمولی بابلیها را برای پیرامون دایره پذیرفت. به این معنی که دایره را به 360 درجه و درجه را به 60 دقیقه و دقیقه را نیز به 60 قسمت برابر تقسیم نمود و جدولی تابع شعاع دایره بدست آورد که وترهای بعضی از قوسها را میداد و این قدیمیترین جدول مثلثاتی است که تاکنون شناخته شده است.
در سال 47ق.م که ژول سزار نیروی دریایی مصررا آتش زد، در کتابخانه بزرگ اسکندریه نیز حریقی ایجاد شد که قسمت اعظم آنرا نابود ساخت. بالاخره در سال 30ق.م به هنگام امپراطوری ملکه کلئوپاترا کشور مصریکی از ایالات امپراطوری روم شد.
در این دوره کوتاه از کشفیات جدید خبری نبود و دانشمندان متوسطی نظیر بطلیموس، منلائوس و باپوس نیز که ظهور کردند تنها به تعلیم و انتشار آثار قدما اکتفا نمودند.
بطلیموس که به احتمال قوی با امپراطوران بطالسه هیچگونه ارتباطی ندارددر تعقیب افکار هیپارک کوشش بسیار کرد.
کتاب مشهور او به نام اصلی«ترکیب ریاضی» شامل یک دستگاه هیأت بیان حرکت دورانی اجسام سماوی و یکدورة کامل مثلثاتکروی و مستقیمالخط و توضیح و محاسبة نمودهای حرکت بومی است. این کتاب را درسال 827 از یونانی به عربی ترجمه کردند ونام آنرا مجسطی یعنی «بسیار بزرگ» نهادند و از آن پس به همین نام باقی ماند.
منلائوس که در اواخر قرن اول میلادی در اسکندریه میزیست به امر امپراطور دومی سین کتابی تألیف کرد که قضیه معروف منلائوس دربارة چهارضلعی محاطی در آن ذکر شده است.
پاپوس که دورة زندگانیش در حدود 350 میلادی بوده است دارای کتابی است به نام «مجموعة ریاضیات». هدف وی از تدوین این کتاب آن بوده است که به اختصار نتایجی را که از بدو پیدایش علم هندسه تا آن زمان حاصل شده بود برای خود بیان نماید. با این حال در موارد بسیار احکام جدید و جالبی که از اکتشافات خودش میبود و بر آن افزود. مسألة معروف پاپوس که در همه کتابهای هندسة ما وجود دارد و قضیه بسیار مهم تعیین مرکز نقل سطوح و احجام که برخلاف واقع آنرا به گولدن نسبت دادهاند.
در این احوال هندوستان به منزلة یک مرکز جدید روشنفکری توسعه مییافت و چنین به نظر میرسید که علم بدانجا فرار کرده و یا به عبارت بهتر فقط آنجا را مقام خود ساخته است. زیرا سابق براین در زمان یونانیها نیز در آنجا وجود داشته است. علوم هندی بیش از علوم تمام ممالک دیگر که تاکنون از ایشان سخن گفتیم در خدمت مذهب بود وشامل بعضی مقدمات علم طب یعنی همانقدر که برای ساختن مشروبات مقدس کفایت میکردو مختصری از علوم نجومیعنی درست همان اندازه که برای تشکیل تقاویم مذهبی مورد نیاز است و اندکی هندسه، مرکب از بعضی طرق عملی که برای ساختن مسجد و محراب لازم است بیش نبود.
در نخستین قرون تاریخ چهار ریاضیدان مشهور در این کشور وجود داشت که عبارت بودند از:
آپاستامبا(قرن پنجم)، آریاب هاتا (قرن ششم)، براهماگوپتا (قرن هفتم) و بهاسکارا (قرن نهم) که در کتب ایشان بخصوص قواعد تناسب ساده و ربح مرکب مشاهده میشود. محاسبات در این کتابها جنبه شاعرانه داشت و حتی نام علم حسابرا «لیلاواتی» گذارده بودندکه معنی دلبری و افسونگری دارد! با شروع قرن دهم پیشرفت کشفیات ریاضی در هندوستاننیز متوقف گردید و مشعل فروزان علم بدست اعراب افتاد.
در سال 622م که حضرت محمدصلی الله علیه و آله وسلماز مکه هجرت فرمود در واقع آغاز شگفتی تمدن اسلام بود. اعراب که جنبش شدید خود را از سدة هفتم آغاز کرده بودند پس از رحلت پیغمبر اسلام در 632 به توسعه سرزمینهای خود پرداختند و بزودی تمام ممالک آفریقائی ساحل مدیترانه را متصرف شدند و این توسعهطلبی ایشان را در اروپاتا اسپانیاو در آسیاتا هندوستانکشانید و در نتیجه تماس با کشورهای مغلوب که مردم آنها غالباً دارای تمدن عالی بودند ذوق شدیدی به آموختن در ایشان بوجود آمد. لذا با سهولت و چالاکی فرهنگ ممالک دست نشانده را پذیرفتند.
در زمان مامون خلیفه عباسی تمدن اسلام بحد اعتلای خود رسید بطوری که از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی علمی بینالمللی گردید.
از ریاضیدانان بزرگ اسلامی یکی خوارزمیمیباشد که در سال 820 به هنگام خلافت مأمون در بغدادکتاب مشهورالجبر و المقابله را نگاشت.
وی در این کتاب بدون آنکه از حروف و علامات استفاده کند، حل معادلة درجه اولرا بدو طریقی که ما امروزه جمع جبری جمل و نقل آنها از یکطرف بطرف دیگر مینامیم، انجام داده است.
دیگر ابوالوفا (998_ 938) است که جداول مثلثاتی ذیقیمتی پدید آورده و بالاخره محمدبن هیثم(1039_ 965) معروف به الحسن را باید نام بردکه صاحب تألیفات بسیاری در ریاضیات و نجوماست.
قرون وسطی از قرن پنجم تا قرن دوازدهم یکی از دردناکترین ادوار تاریخی اروپاست. عامة مردم در منتهای فلاکت و بدبختی بسر میبردند. جنگهای متوالی و قتل و غارت و از طرف دیگر نفوذ کلیسا آنچنان فکر مردم را به خود مشغول داشته بود که هیچ کس فرصت آنرا نمییافت که در فکر علم باشد، آری مدت هفت قرن تمام اروپا محکوم به این بود که بار گران جهل و نادانی را بر دوش کشد. در اواخر قرن دهم ژربر فرانسوی کوشید تا به کمک مطالبی که در چند مدرسه از کلیساهای بزرگ اروپا آموخته بود پیشرفت جدیدی به علوم مقدماتی بدهد. وی دستگاه مخصوص را که برای محاسبه بکار میرفت اصلاح کرد. این دستگاه همان چرتکه بود.
برجستهترین نامهائی که در این دوره ملاحظه مینمائیم، در مرحله اول لئوناردیوناکسی (1220_1170) ریاضیدان ایتالیائی است. وی که مدتهادر مشرق زمین اقامت کرده بود، آثار برخی از دانشمندان اسلامی را از آنجا به ارمغان آورد. همچنین برای اولین بار علم جبررا در هندسهمورد استفاده قرار داد. دیگر نیکلاارسم فرانسوی میباشد که باید او را پیشقدم هندسه تحلیلیدانست. وی اولین کسی است که نه تنها مجذور و مکعب و توانهای چهارم و پنجم اعدادرا در نظر گرفت بلکه اعدادرا بقوای کسری از قبیل یک دوم و دو سوم و یک هفتم و غیره نیز رسانید و به عبارت دیگر وانهای کسری اعدادرا بدست آورد.
در قرن پانزدهم ترقی فنی، پیشرفت علوم نظری را تحتالشعاع خود را قرار داد. اختراع چاپ در سال 1440 بوسیله گوتنبرگ سبب آن شد که تعداد کتاب در جهان با سرعتی صاعقهآسا رو به افزایش نهد و زمینه برای مطالعة منابع علمی گذشته که کم و بیش فراموش شده بود مهیا گردد.
در قرون پانزدهم و شانزدهم دانشمندان ایتالیائی و شاگردان آلمانی آنها در حساب عددی جبر و مکانیک ترقیات شایان نمودند. تارتاگلیا و کاردان در ایتالیا سنن ریاضیدانان عهد عتیق را از سر گرفتند.
رژیمن تانسوس آلمانی که از جمله بزرگترین منجمان این دوره است کتاب قدیمیترین کتاب جالبی دربارة مثلثات نگاشت. این کتاب قدیمیترین کتاب کامل مثلثات است که در مغربزمین انتشار یافت. همچنین ژانورتر از اهالی نورنبرگ آلمان که به هندسه قدما به خوبی مسلط بود راهحل عالمانه و بدیعی از یکی از مسائل ارشمیدس که موضوع آن تقسیم کره به کمک صفحه به نسبت معلومی بود بدست داد. وی در تمام قسمتهای ریاضی بخصوص مثلثات تألیفات بسیار دارد.
ریاضیدانان فرانسوی در اوایل قرن شانزدهم عموماً مادون ایتالیائیها بودند. مشهورترین آنها یکی اورنس فین است که در هندسه بویژه در موردتربیع دایره اکتشافات تازهای کرد. دیگر پییرلارامه موسوم به راموس است که بیشتر از لحاظ آثار فلسفی خود شهرت یافت. با وجود این به ریاضیات نیز علاقه فراوان نشان داد تا جائی که کتابی در ستایش ریاضیات و کتاب دیگری در مقدمات حسابو هندسهتألیف کرد. بالاخره کاندال را باید نام ببریم که در مطالعات مخصوص به چند وجهیها تخصص یافت.
در اواخر قرن شانزدهم در فرانسه شخصی بنام فرانسواویت (1603_1540م) به پیشرفت علوم ریاضی خدمات ارزندهای نمود. وی یکی از واضعین بزرگ علم جبر و مقابلة جدید و در عین حال هندسه دان قابلی بود. مثلثات جدید فقط متکیبر زحمات اوست. هر چند بسیاری از قدما و دانشمندان جدید باری پایهگذاری اساس آن زحماتی کشیدهاند، اما ترقی آن کاملاً مرهون وی است. او اولین کسی است که مثلث کروی را با معلوم بودن سه ضلع آن حل کرد و در عین حال نخستین ریاضیدانی است که برای حل مسأله ترسیم دایره مماس بر سه دایرة دیگر راهحل هندسی بدست داد و ریشههای معادلة درجه چهارم را ساخت.
کشور دانش خیز هلند نیز در اواخر این قرن مهد آزادی و یکی از مراکز مهم علمی جهان شده بود. آدرینرومن و سپس آدرین متیوس مقدار تقریبی عدد پی را محاسبه کردند و یکی دیگر از هموطنان آنان بنام وان سولن تا 30 رقم اعشار آن را بدست آورد.
همچنین انگلستان که در آغاز قرن شانزدهم برای پیشرفت علم جبرکوشیده بود اینک با کشف لگاریتم بوسیله جان نپر تئوری فن محاسبة عددی را یک قدم قطعی بجلو برد.
کوپرنیک(1543_1473) منجم بزرگ لهستانی در اواسط قرن شانزدهم در کتاب مشهور خود بنام «دربارة دوران اجسام آسمانی» که همزمان با مرگش انتشار یافت تصویری از منظومة شمسی بدست داد که امروز هر دانش آموزی با آن آشناست:
مرکز منظومة شمسی، خورشید است نه زمین.
در حالی که ماه بگرد زمین میچرخد، سیارات دیگر، همراه با خود زمین بگرد خورشید میچرخند.
زمین در هر 24 ساعت یکبار حول محور خود میچرخد نه کرة ستارههای ثابت.
پس از مرگ کوپرنیک در قلب اروپا، در کشور دانمارک مردی بنام تیکو براهه متولد شد که کارهای او پایه و اساس انقلاب قریب الوقوع نجوم گردید. وی نشان داد که حرکت سیارات کاملاً با نمایش و تصویر دایرههای هممرکز وفق نمیدهد. از آنجا که تیکو براهه بیشتر به رصدهای مستقیم و اندازهگیری سرگرم بود، هیچ کوشش برای تجزیه و تحلیل نتایج خود انجام نداد و این کار به یوهان کپلر که در سال آخر زندگی تیکو براهه دستیار وی بود محول گشت.
پس از سالها کار، وی به نخستین کشف مهم خود رسید و چنین یافت که سیارات در حرکت خود به گرد خورشید یک مدار کاملاً دایره شکل نمیپیمایند بلکه همة آنها بر روی بیضیهایی حرکت میکنند که خورشید در یکی از دو کانون آنها قرار دارد.
همچنین وی در نخستینبار اصل ماند (اصل جبر) را در مکانیک حدس زد که بعدها بوسیلة گالیله صورت تحقیق یافت.
دسته بندی | ریاضی |
بازدید ها | 18 |
فرمت فایل | doc |
حجم فایل | 568 کیلو بایت |
تعداد صفحات فایل | 16 |
توزیع نرمال
توزیع نرمال
توزیع نرمال، که ممکن است بعضی از خوانندگان، نمودار آن را به عنوان منحنی زنگدیس بشناسند، گاهی با نامهای پیرلاپلاس و کارس گاوس، که در تاریخ پیدایش آن نقش چشمگیر داشته اند، همراه است. گاوس توزیع نرمال را با روش ریاضی به عنوان توزیع احتمال خطای اندازه گیریها به دست آورد و آن را «قانون نرمال خطاها» نامید.بعداً منجمین، فیزیکدانها، و کمی بعد از آن، کسانی که در بسیاری از رشته ها دادهها را گردآوری می کردند، دریافتند که بافت نگارهای این داده ها دارای این خصوصیت مشترک هستند که ارتفاع مستطیلها ابتدا بتدریج به یک مقدار بیشینه صعود می کنند و سپس به طور متقارن کاهش می یابند. هرچه منحنی نرمال تنها منحی نیست که چنین شکلی دارد ولی معلوم شده است که در موارد بسیار زیادی، تقریب قابل قبولی به دست می دهد. زمانی در جریان مراحل اولیة تکامل آمار، چنین احساس میشد که داده های مربوط به هر پدیدة واقعی باید مطاق با منحنی نرمال زنگدیس باشند و در غیر این صورت می باید نسبت به فرایند جمع آوری داده ها مشکوک بود. از اینجاست که این توزیع به نام توزیع نرمال معروف شده است. لکن بررسی دقیق داده ها در اغلب موارد، نارسایی توزیع نرمال را آشکار ساخته است. لکن بررسی دقیق و در حقیقت، عمومیت توزیع نرمال افسانه ای بیش نیست، و مثالهای توزیع های غیرنرمال در هر یک از قلمروهای تحقیقات، فراوان اند. با وجود این، توزیع نرمال نقشی اساسی در آمار بازی می کند، و روشهای استنباطی که از آن به دست می آیند، دارای قلمرو کاربرد وسیعی هستند و ستون فقرات روشهای جاری تجزیه و تحلیل آماری را تشکیل می دهند.
هرچند در اینجا صحبت از اهمیت توزیع نرمال است، ولی بحث ما در واقع به ردة وسیعی از توزیعها که دارای چگالی زنگدیس اند، مربوط می شود. هر توزیع نرمال به وسیلة مقدار میانگین آن، ، و انحراف معیار آن، ، به طور کامل مشخص می شود؛ این مقادیر در فرمول تابع چگالی احتمال ظاهر می شوند.
دسته بندی | ریاضی |
بازدید ها | 11 |
فرمت فایل | doc |
حجم فایل | 268 کیلو بایت |
تعداد صفحات فایل | 18 |
ترکیبات و نظریه های گراف
در این مقاله می خواهیم به دو مبحث بزرگ از ریاضیات گسسته با نامهای ترکیبات و نظریهی گراف بپردازیم که در این دوران شاهد پیشرفت چشمگیر آنها می باشیم .
این دو مبحث بدلیل آنکه دارای کاربرد وسیعی در علم کامپیوتر و برنامه سازی های کامپیوتری میباشند حائز اهمیت فراوان می باشند .
1-ترکیبات :
شاید در نگاه اول ترکیبات یک بخش معماگونه و سطحی از ریاضیات به نظر برسد که دارای کاربرد چندانی نبوده و فقط مفهوم های انتزاعی را معرفی می کند ولی این شاخه از ریاضیات دارای گسترهی وسیع بوده و دارای شاخه های زیادی نیز می باشد .
ابتدا به مسأله ای زیبا از ترکیبات برای آشنا شدن بیشتر با این مبحث ارائه می کنیم .
سوال : یک اتاقی مشبک شده به طول 8 و عرض 8 داریم که خانهی بالا سمت چپ و خانهی پایین سمت راست آن حذف شده است (مانند شکل زیر)
حال ما دو نوع موزاییک داریم . یکی 2*1 ( ) و دیگری 1×2 ( ) سوال این است که آیا می توان این اتاق را با این دو نوع موزائیک فرش کرد .
احتمالاً اگر شخص آشنایی با ترکیبات نداشته باشد می گوید «آری» و سعی می کند با کوشش و
خطا اتاق را فرش کند ولی این کار شدنی نیست ؟! و اثبات جالبی نیز دارد .
اثبات : جدول را بصورت شطرنجی رنگ می کنیم مانند شکل زیر :
حال با کمی دقت متوجه می شویم که هر موزائیک یک خانه از خانه های سیاه و یک خانه از خانههای سفید را می پوشاند یعنی اگر قرار باشد که بتوان با استفاده از این موزائیک ها جدول پوشانده شود باید تعداد خانه های سیاه با تعداد خانه های سفید برابر باشد ولی این گونه نیست زیرا تعداد خانه های سفید جدول برابر 32 و تعداد خانه های سیاه برابر 30 می باشد . در نتیجه این کار امکان امکان پذیر نیست .
این مسأله مربوط به مسائل رنگ آمیزی در ترکیبات بوده که دارای دامنهی وسیعی از مسائل دشوار و پیچیده می باشد در زیر چند نمونه از مسائل آسان و سخت را بیان می کنیم .
1-ثابتکنید هیچ جدولی را نمی توان به موزائیک هایی به شکل و پوشاند .
(راهنمایی: ثابت کنید حتی سطر اول جدول را هم نمی توان پوشاند)
2-ثابت کنید یک مهرهی اسب نمی تواند از یک خانهی دلخواه صفحهی n*4 شروع به حرکت کند و تمام خانه ها را طی کند .
3-یک شبکهی n*m از نقاط داریم یک مسیر فراگیر مسیری است که از خانهی بالا سمت چپ
شروع به حرکت کرده و از همهی خانه هر کدام دقیقاً یک بار عبور کند و به خانهی سمت راست پایین برود ثابت کنید شرط لازم و کافی برای وجود یک مسیر فراگیر در شبکهی n*m آن است که لااقل یکی از m یا n فرد باشد (مرحلهی دوم المپیاد کامپیوتر ایران) در شکل زیر یک مسیر فراگیر را برای جدول 5*4 می بینیم .
B
4-ثابت کنید شرط لازم کافی برای پوشش جدول n*m با موزائیک های 2*1 یا 1*2 آن است که یا m یا n زوج باشند .
حال میخواهیم یک مبحث مهم از ترکیبات به نام استقراء را معرفی کنیم.
استقراء بعنی رسیدن ازجزء به کل و هم ارز است با اصل خوشترتیبی زیر مجموعهها( اصل خوشتربینی بیان میکند که هر مجموعه متناهی از اعداد عضوی به نام کوچکترین عضو دارد).
برای اثبات حکمی به کمک استقراء لازم است:
1) حکم را برای یک پایة دلخواه(که معمولاً کوچک باشد) ثابت کنیم.
2) حکم را برای یک k دلخواه فرض میگیریم.
3) به کمک قسمت 2 حکم را برای ثابت میکنیم.
بسیاری از گزارهها به کمک این استقراء که در ظاهر ساده است ثابت میشود:
یک مثال ساده:
ثابت کنید: .
برای که داریم و حکم برقرار است:
فرض کنیم برای درست باشد حکم را برای ثابت میکنیم داریم:
که این قسمت طبق فرض بردار میباشد
و برای نیز حکم مسأله برقرار است.
یک مثال سخت:
این سئوال در المپیاد کامپیوتر امسال مطرح شده و ما فقط یک قسمت آنرا بطور خلاصه بیان میکنیم.
سئوال: در روز A دارای تعداد مجموعه میباشد بطوریکه هیچ مجموعهای زیرمجموعة دیگری نیست یعنی اکر )
حل شایان در روز B میآید از روی مجموعههای A تمام مجموعههایی را نمیسازیم که دارای دو شرط زیر میباشند:
1- هر مجموعهای دلخواه در روز B با تمام مجموعهها در روز A اشتراک دارد.
2-اگر از یک مجموعة دلخواه در روز B یک عضو را حذف کنیم آنگاه دیگر شرط 1 برقرار نباشد( که به این شرط، شرط مینیمالی میگوئیم:
حال فراز در روز C از روی مجموعههای B تمام مجموعههایی با دو شرط بالا را میسازد ثابت کنید ( یعنی تمام مجموعههای روز اول در روز سوم نیز تولید شدهاند)
اثبات: ابتدا لم زیر را ثابت میکنیم:
لم: به ازای هر مجموعة دلخواه در روز A مثل در روز B n تتا مجموعه وجود دارند بطوریکه هر کدام از آنها دقیقاً یکی از اعضای را دارند( ممکن است اعضای دیگری نیز داشته باشند ولی هر کدام دقیقاً یکی از را دارند.)
اثبات لم: با استقراء روی تعداد مجموعههای روز اول حکم را ثابت میکنیم. برای یک مجموعه در روز A وضعیت مجموعهها در روزهای C,B,A مشخص شدهاند:
دسته بندی | ریاضی |
بازدید ها | 18 |
فرمت فایل | doc |
حجم فایل | 267 کیلو بایت |
تعداد صفحات فایل | 35 |
تحلیل داده ها
1- ارقام با معنی:
برای تعیین رقمهای با معنا ، رقمها را از سمت چپ به راست می شماریم. صفرهایی ک قبل از اولین رقم سمت چپ نوشته می شوندجزء رقمهای با معنا به حساب نمی آیند این صفرها به هنگام تبدیل یکاها ظاهر می شوند و تبدیل یکاها نباید تعداد رقمهای با معنا را تغییر دهد
12/6 : سه رقم بامعنی
0010306/0 :پنج رقم با معنی که اولین رقم با معنی یک است.صفرهای قبل از یک با معنی نیستند
20/1 : سه رقم با معنی در صورتیکه صفر با معنی نباشد عدد باید به صورت2/1 نوشته شود
38500 : سه رقم با معنی، چیزی برای اینکه نشان دهد صفرها با معنی هستند یا نه مشخص نیست می توان این ابهام را با نوشتن بصورتهای زیر برطرف کرد:
: هیچکدام از صفرها با معنی نیستند
: یکی از صفرها با معنی است
:هر دو صفر با معنی است
m 040/0 = Cm0 /4=mm40 که هر سه دارای سه رقم با معنی هستند.
2- گرد کردن اعداد:
اگر بخواهیم ارقام عدد 3563342/2 را به دو رقم کاهش دهیم، این عمل را گرد کردن عدد می نامند. برای این منظور باید به رقم سوم توجه کنیم بدین صورت که اگر قم سوم بزرگتر یا مساوی5 باشد رقم دوم به طرف بالا گرد می شود و اگر رقم سوم کوچکتر از 5 باشد رقم دوم به حال خود گذاشته می شود
4/1 3563342/2
62700 62654
108/0 10759/0
3- محاسبات و ارقام با معنی:
می خواهیم سطح مقطع یک استوانه به قطر6/7 را بدست آوریم:
اشکال کار: اگر دقت کنیم محاسبات تا 10 رقم با معنی است اگر از کامپیوتری تا 100 رقم استفاده می کردیم چه؟ در صورتیکه قطر کره تا دو رقم با معنی است بنابراین در اینگونه موارد به نکات زیر توجه می کنیم:
توجه: اگر مجبورید محاسبه ای را که در آن خطای مقادیر مشخص نیست انجام دهید و می بایستی فقط با ارقام با معنی کار کنید به نکات زیر توجه کنید:
الف ) زمانی که اعداد را در هم ضرب و یا بر هم تقسیم می کنید: عددی که با کمترین ارقام با معنی در محاسبه است را شناسایی کنید به حاصل محاسبه همین تعداد ارقام با معنی نسبت دهید
چون 7/3 با دو رقم با معنی است
ب ) زمانی که اعداد را با هم جمع و یا از هم کم می کنید: تعداد ارقام اعشاری عدد حاصل از محاسبه را برابر تعداد کمترین ارقام اعشاری اعداد شرکت داده شده در محاسبه گرد کنید
کمترین اعشار مربوط به1/13 است
مثال: شعاع یک کره5/13 سانتیمتر برآورد شده است. حجم ایمن کره را بدست آورید؟
جواب:
مثال: چگالی کرهای به جرم44/0 گرم و قطر76/4 میلی متر را بدست آورید؟
4- متغیرهای وابسته و مستقل:
به کمیتی که مقدار آن را می توانیم تنظیم نمائیم و یا در طول آزمایش به دلخواه تغییر داده می شود، متغیر مستقل گفته می شود و آنرا به عنوان مختصهx در نمودار می گیریم.
به کمیتی که بر اثر تغییر در متغیر مستقل پیدا می کند، متغیر وابسته گفته می شود و به عنوان مختصهy در نمودار گرفته می شود.
مثلا در آزمایش انبساط طولی میله در اثر حرارت دما متغیر مستقل و طول میله متغیر وابسته می باشد
5- خطا :
تمام اندازه گیریها متاثر از خطای آزمایش هستند.منطور این است که اگر مجبور با انجام اندازه گیریهای پیایی یک کمیت بخوصوص باشیم، به احتمال زیاد به تغییراتی در مقادیر مشاهده شده برخورد خواهیم کرد. گرچه امکان دارد بتوانیم مقدار خطا را با بهبود روش آزمایش و یا بکارگیری روشهای آماری کاهش دهیم ولی هرگز نمی توانیم آن را حذف کنیم.
1-5- خطای دقت وسایل اندازه گیری :
هیچ وسیله اندازه گیری وجود ندارد که بتواند کمیتی را با دقت بینهایت اندازه گیری نماید.بنابراین نادیده گرفتن خطای وسایل اندازه گیری در آزمایش اجتناب ناپذیر است.
اگر اندازه کمیتی که اندازه می گیریم با گذر زمان تغییر نکند، مقدار خطا را نصف کوچکترین درجه بندی آن وسیله در نظر می گیریم.
مثال:
متر کوچکترین درجه mm1 = مقدار خطا
پس اندازه گیریی mm54 را بصورت بیان می کنیم
دما سنج کوچکترین درجه ºC2 = مقدار خطا
پس اندازه گیریی ºC60 را بصورت بیان می کنیم
2-5- خطای خواندن مقدار اندازه گیری:
3-5- خطای درجه بندی وسایل اندازه گیری:
تعریف خطای مطلق: اگر خطا را با همان یکای کمیت اندازه گیری شده بیان نمائیم، به این خطا، خطای مطلق کمیت اندازه گیری گفته می شود
تعریف خطای نسبی: اگر خطا بصورت کسری باشد، به این کسر، خطای نسبی مقدار کمیت اندازه گیری شده گفته می شود
4-5- ترکیب خطاها :
ممکن است در آزمایشی نیاز به یافت چند کمیت، که باید آنها را بعداُ در معادله ای وارد کنیم، داشته باشیم برای مثال ممکن است جرم و حجم جسمی را اندازه بگیریم و سپس نیاز به محاسبه چگالی داشته باشم، که با رابطه زیر تعریف می شود: سوال اینجاست که چه ترکیبی از خطاهای مقادیر m وV ] اندازه خطای را بدست می دهد. بدین منظور سه روش زیر ارائه داده می شود:
الف) روش اول: این روش را با دومثال زیر توضیح می دهیم:
مثال1: قطر سیمی با مقطع دایره ای برابر است با: مطلوب است اندازه سطح سیم و مقدار خطای آن؟
جواب:
مثال2: در یک آزمایش الکتریکی، جریان جاری شده در یک مقاومت برابر با و ولتاژ دو سر مقاومت اندازه گیری شد.اندازه مقاومت و مقدار خطای مقاومت را بدست آورید؟
دسته بندی | ریاضی |
بازدید ها | 25 |
فرمت فایل | doc |
حجم فایل | 196 کیلو بایت |
تعداد صفحات فایل | 28 |
نامعادلات و نسبت های مثلثاتی
نماد علمی:
نماد علمی مدلی جدید برای عدد نویسی است که از آن برای سهولت بخشیدن به امر نوشتن و خواندن اعداد بسیار بزرگ و یا بسیار کوچک مانند محاسبة جرم سیارات و یا یک اتم از عنصر، استفاده می کنند.
نماد علمی اعداد مثبت را به صورت می نویسند که در آن K عددی است اعشاری بین یک و ده و n نیز عددی صحیح است.
مثال: اعداد زیر را به صورت نماد علمی بنویسد.
(الف (ب
نامعادله:
اگر یک نامساوی شامل متغیر باشد به آن نامعادله گفته می شود.
روش حل نامعادله:
حل نامعادله از بسیاری جهات شبیه حل معادله می باشد، ولیکن با این تفاوت که در حل نامعادله برای مجهول محدوده ای به عنوان پاسخ (جواب) بدست می آید و در معادله یک مقدار مشخص و معینی برای مجهول حاصل می گردد.
:مثال
قوانین و نکات مهم در مورد نامساوی
1-به طرفین یک نامساوی می توان عددی را اضافه و یا کم نمود.
2-می توان طرفین یک نامساوی را در عددی مثبت ضرب یا بر آن تقسیم کرد.
3-اگر طرفین یک نامساوی را در یک عدد منفی ضرب (تقسیم) کنیم جهت نامساوی عوض می شود.
4-اگر طرفین یک نامساوی هم علامت باشند (مثبت یا منفی باشند) و طرفین را عکس کنیم. جهت نامساوی عوض می شود.
حل نامعادلات کسری:
برای حل نامعادلات کسری مانند معادلات گویا عمل می کنیم. یعنی دو طرف نامعادله را در کوچکترین مضرب مشترک مخرجها ضرب می نمائیم تا نامعادله از حالت کسری به خطی درآید.
نامعادلات توأم: این گونه نامعادلات یا بصورت دو نامعادله مجزا می شوند و یا اینکه ما باید آنها را به صورت دو نامعادله مجزا درآوریم. و روش حل آن بدین صورت است که هرکدام از نامعادلات را حل نموده و در نهایت بعد از بدست آوردن پاسخ آنها، اشتراک جوابهای آن دو را به عنوان جواب یا پاسخ اصلی بیان می کنیم.
مثال: نامعادلات توأم زیر را حل نمائید.
مثلثات
درجه (D): اگر یک دایره را به 360 قسمت مساوی تقسیم کنیم؛ به هر قسمت یک درجه گویند.
گراد (G): اگر یک دایره را به 400 قسمت مساوی تقسیم کنیم؛ به هر قسمت یک گراد گویند.
رادیان (R): یک رادیان زاویه ای است که کمان مقابل به آن برابر شعاع دایره باشد. یعنی هر دایره رادیان است.
رابطة مقابل برقرار است
مثال 1:
100 گراد چند درجه و چند رادیان است؟
مثال 2:
مقدار زاویه ای را بر حسب رادیان بیابید که اگر به اندازه اش بر حسب درجه 15 واحد اضافه شود اندازة آن برحسب گراد بدست آید.
نسبتهای مثلثاتی:
برای بدست آوردن نسبتهای مثلثاتی، یک زاویه را با جهت مثبت محور xها درنظر می گیریم. و آنها را به صورت پائین تعریف می کنیم. «باید توجه داشت که نقطه A نقطه یا اختیاری برروی ضلع زاویه است و طول پاره خط OA برابر r فرض شده که همواره مثبت است»:
دسته بندی | ریاضی |
بازدید ها | 21 |
فرمت فایل | doc |
حجم فایل | 168 کیلو بایت |
تعداد صفحات فایل | 19 |
روش گرادیان
خلاصه :
در گذشته تعداد زیادی مدلهای مختلف با استفاده از مطالب مشاهده شده در جهت برآورد یا تنظیم ماتریسهای OD پیشنهاد شده بود . در حالیکه این مدلها از نظر فرمولاسیون ریاضی متفاوت بودند و از نظر تفسیر نیز متفاوت بودند . تمامی آنها در این حقیقت که استفاده از آنها برای شبکه های در اندازه واقعی مشکل است مشترک بودند . این ناشی از پیچیدگی محاسبات که در آنها درگیر است و احتیاج برای نرم افزار خیلی تخصصی برای انجام دادن آنها است .
در این مقاله ما یک مدل بر پایه گرادیان که قابل اعمال در شبکه های در بعد بزرگ است ارائه می کنیم . از نظر زیاضی مدل به شکل یک مسئله حداقل سازی محدب در جائیکه توسط دنبال کردن جهت نزولی ترین شیب ما می توانیم تضمین کنیم که ماتریس OD اصلی بیش از حد لازم تغییر پیدا نکرده است ، فرموله شده است .
ما نمایش می دهیم که چگونه این تنظیم مدل درخواستی می تواند بدون احتیاج به گسترش هیچگونه نرم افزار جدید اجرا شود . بلکه تنها توسط استفاده از اقلام موجود از یک بسته برنامه ریزی حمل و نقل قابل اجرا خواهد بود . از آنجائیکه یک قلم از مراحل تنظیم اساساً در دو انتخاب تعادلی در شبکه م.ورد نظر وجود دارند ، این روش حتی در شبکه ها و ماتریس ها در مقیاس بزرگ قابل اعمال است . تا به اینجا ، مدلها بطور موفقی در چندین پروژه ملی و شهری در سوئیس ، سوئد و فنلاند با استفاده از شبکه هایی تا حد 522 منطقه ترافیکی و 12460 سفر اعمال شده است . برخی از نتایج این مطالعه نشان داده خواهد شد .
کلمات کلیدی : برآورد ماتریس O-D ، انتخاب تعادلی ، روش گرادیان .
مقدمه :
تقریباً در تمامی کاربردهای برنامه ریزی حمل و نقل ، اطلاعات ورودی که بدست
می آید نشان از همه چیز مشکل تر و گران تر است . ماتریس درخواست مبدا - مقصد است . از آنجائیکه اطلاعات درخواستی بطور مستقیم قابل مشاهده نیست ، باید توسط تحقیقات دقیق و گران قیمت جمع آوری شود که درگیر با مصاحبه های در منزل و در جاده ها یا روشهای پیچیده علامت گذاری یا نشانه گذاری است . برعکس حج سفرهای مشاهده شده به آسانی و با دقت قابل قبولی توسط شمارش در نقاط خاصی از سفر یا دستی یا اتوماتیک با استفاده از دستگاههای شمارنده مکانیکی یا القایی قابل بدست آمدن است . بنابراین تعجب آور نیست که مقدار چشم گیری از تحقیقات در جهت بررسی احتمال برآورد یا بهبود یک ماتریس درخواست مبدا - مقصد با
حجم های مشاهده شده روی سفرهایی در شبکه مورد نظر انجام می شود .
تعداد زیادی از مدلها در گذشته پیشنهاد شده است . Vanvilet - (1980) willumsen , vanzuylen و (1981)willumsen - (1982)Nguyen - Vanzuylen و Branston (1982) - (1987)spiess . این مدلها در حالیکه خیلی از لحاظ تئوریکی جالب هستند ، تاکنون از لحاظ عملی ارتباط کمی داشته اند . این ناشی از زمان زیادی است که صرف محاسبات می شود و کاربرد در مسائل در بعد کوچک است . آنچه که ما خیلی خوب می دانیم این است که هیچکدام از این روشها بطور موفق به شبکه های در ابعاد وسیع و بزرگ با صدها منطقه ترافیکی و هزاران سفر شبکه ای اعمال نشده است . اکثر این روشهای سنتی به شکل مسائل اپتیمم سازی که در آنها تابع هدف هماهنگ با برخی توابع فاصله بین یک ماتریس درخواست اولیه و درخواست نتیجه شده g قابل فرموله شدن هستند . سپس مسائل محدود کننده در جهت نزدیک کردن حجم های انتخاب شده به حجم های مشاهده شده در نقاط شمارش استفاده می شوند . (توجه داشته باشید که برخی فرمولاسیون ها VanZuylen و (1982)Branston مسائل محدود کننده در آنها دخیل می شوند و بنابراین بعنوان اصطلاحات اضافی در توابع هدف ظاهر می شوند . )
در بخشهای زیر ما یک مدل جدید که مناسب برای کاربردهای در مقیاس بزرگ است را تشریح می کنیم . ما نشان می دهیم که چگونه این مدل بدون احتیاج به گسترش هیچگونه برنامه جدیدی قابل اجرا است ، اما به جای آن با استفاده از نسخه استاندارد از بسته برنامه ریزی حمل و نقل EMME/2 استفاده می شود . در نهایت ما نتایج برخی کاربردهای در مقیاس شهری و ملی را که در آنها مدل جدید ما اخیراً استفاده شده را خلاصه می کنیم .
روش گرادیان :
در این مقاله یک نوع جدید از مدلها پیشنهاد شده است . همچنین بعنوان یک مسئله اپتیمم سازی فرموله شده است . اما در اینجا تابع هدف برای اینکه حداقل سازی شود آنرا در فاصله بین حجمه ی مشاهده شده و انتخاب شده در نظر گرفته ایم . آسان ترین تابع از این نوع جذر جمع اختلاف ها ، که به مسئله حداقل سازی هدایتمان می کند می باشد .
دسته بندی | ریاضی |
بازدید ها | 26 |
فرمت فایل | doc |
حجم فایل | 574 کیلو بایت |
تعداد صفحات فایل | 130 |
جبر
جبر از شاخه های اصلی علم ریاضیات که تاریخی بیش از 3000 سال دارد.
این علم در طول تاریخ تحولات بسیاری داشته و در حال حاضر شامل شاخه های زیادی است.تاریخچه این علم به بیش از 3000 سال پیش در مصر و بابل بر می گردد .
روش های هندسی برای حل برخی از معادلات جبری استفاده می گردیده است. در قرن اول میلادی نیز بحث در مورد برخی از معادلات جبری در آثار دیوفانتوس یونانی و برهماگوپتای هندی دیده می شود.
کتاب جبر و المقابله ای خوارزمی اولین اثر کلاسیک در جبر می باشد که کلمه ی جبر یا Algebra از آن آمده است.خیام هم دیگر ریاضیدانان شهیر ایرانی است که در آثار خود جبر را از حساب تمیز داده و گامی بزرگ را در تجرید و پیشرفت این علم برداشت.
در قرن 16 میلادی، روش حل معادلات در جه سوم توسط دل فرو(Scipione del Ferro ) و معادلات درجه چهارم توسط فراری(Ludovico Ferrari ) کشف گردید
اواریست گلرا(Evariste Galois ) ریاضیدان فرانسوی که در 20 سالگی در جریان انقلاب فرانسه در یک دوئل کشته شد بیشترین سهم را در پیشرفت و تجرید این علم داشت که نوشته های او سالها پس از مرگش، پس از مطالعه و بررسی توسط دیگر ریاضیدانان موجب تحول عظیم در این علم گردید.
نیلزهنریک ایل(Niels Henrik Abel ) نروژی اولین کسی بود که ثابت کرد معادلات درج 5 به بالا بوسیلة رادیکالهای حل پذیر نیستند.
کارل فریدریش گارس(Carl Friedrich Gauss )ریاضیدان آلمانی که تأثیرات ژرفی در توسعة شاخه های مختلف برداشته، سهم زیادی در پیشرفت این علم داشت که مهمترین آن همانا قضیه اساسی جبر می باشد.
پس از کارهای اویلر، لاگرانژ، گاوس، کوشی و بسیاری دیگر از بزرگترین ریاضیدانان تاریخ، علم جبر به قرن بیستم رسید که با شروع این قرن و به دلیل کشف تناظرهای شاخه هایی از این علم با شاخه هایی از هندسه، این علم در شاخه های مختلف پیش رفت.
از جمله بزرگترین پیشرفت های جبر و ریاضیات از این قرن، کلاس بندی گروههای سادة متناهی می باشد.
کلاس بندی
جبر مقدماتی: دراین شاخه از جبر ویژگیهای اصل چهارگانه در دستگاه اعداد حقیقی ثبت می شود. علائمی تعریف می شوند که بوسیله آن اعداد ثابت و متغیرها از هم تفکیک می گردد و روشهایی که برای حل معادلات مورد استفاده قرار می گیرد.
جبر مجرد: این شاخه ساختار های جبری از قبیل گروهها، حلقه ها، و میدان ها تعریف می شوند و در مورد خصوصیات آنها بحث می شود این شاخه از جبر که حوزه پژوهش بسیاری از ریاضیدانان معاصر خود به شاخه های مخلتفی تقسیم می شود:
جبر جابجایی
جبر ناجابجایی
زندگی کارل فریدریش گاوس
کارل فریدریش گاوس فرزند باغبان فقیری از اهالی برونشویک آلمان بود که در تاریخ 30 آوریل سال 1777 متولد شد پدرش مردی شرافتمندو مادرش زنی فعال و باهوش بود و گاوس بیش از سه سال نداشت که پدرش در اثر اشتباهی که در حساب ورقه ای بود مطلع ساخت و بدین ترتیب توانست استعداد فوق العاده خود را در محاسبه نشان دهد هنگامی که گاوس در مدرسه ابتدایی مشغول تحصیل بود و بیش از ده سال نداشت یک روز معلم او سر کلاس شاگردان را وادار نمود که مجموع سلسله ای از اعداد را با هم جمع کنند ولی هنوز صورت مسئله تمام نشده بود که گاوس ده ساله گفت من مسئله را حل کردم او متوجه شده بودکه اختلافات مابین دو اعداد از این سلسله مقدار پست ثابت و خود به خود دستوری برای مجموع این نوع سلسله اعداد بوجود آورد معلم او سخت متعجب شد و اظهار داشت که این کودک از من قوی تر است و من دیگر معلوماتی ندارم که به او بیاموزم گاوس در سال 1795وارد دانشگاه گوتینگن شد و در 19سالگی به حل بسیاری از مسائل که برای اویلر و لاگرانژ بی جواب مانده بود و موفق گردید گاوس نیز همچون ارشمیدس و دکارت و ایزاک نیوتن در کودکی دچار حادثه ای گردید که ممکن بود ریاضیات را از وجود او محروم سازد وی در اولین سالهای کودکی بود و طغیان آب ترعه ای را که از کنار خانه محقر ایشان می گذشت سرریز کرده بود کودک در کنار آب بازی می کرد در ترعه افتاد و چیزی نمانده بود که غرق شود و اگر برحسب تصادف کارگری که در آن نزدیکی بود وی را نجات نمی داد زندگانی گاوس به همین جا خاتمه می یافت. روز 30 مارس 1976 یکی از روزهای تاریخی دوران زندگی گاوس است در این روز یعنی درست یکماه قبل از اینکه 19 ساله شودگاوس بطور قطع تصمیم به مطالعه در ریاضیات گرفت از همین روز بود که وی دفتر یادداشت علمی خود را ترتیب داد که یکی از ذیقیمت ترین مدارک تاریخ ریاضیات می باشد و اولین مسئله ای که در آن ثبت شده است همین اکتشاف بزرگ او می باشد.این دفتر یادداشت فقط در سال 1898 در معرض مطالعه عموم قرار گرفت یعنی 43 سال بعد از وفات گاوس. گاوس در 9 اکتبر 1805 در 28 سالگی با یوهانااشتهوف از اهالی شهر براونشواریگ ازدواج می کند و در نامه ایی که سه روز بعد از نامزدی خود به دوست دانشگاهی خویش ولنگانگ بولیه نوشته است از خوشبختی خویش چنین گفتگو می کند. زندگانی هنوز به صورت بهار ابدی با رنگهای جدید و درخشان در مقابل من ایت از این ازدواج سه فرزند نصیب او شد یوزف و مینا و لودویگ نام داشتند زنش در 11 اکتبر 1809 بعد از تولد لودویک وفات یافت. اگرچه سال بعد( 4 اوت 1810) بخاطر کودکانش از نو ازدواج کرد ولی سالها بعد از زن اول خود با تأثیر بسیار گفتگو می کرد زن دوم او که میناوالدگ نام داشت دوپسر و یک دختر برایش آورد. فقر و تنگدستی گاس از یک طرف و فوت زنش از طرف دیگر بدبینی عجیبی در او بوجود آورد بطوریکه تا آخر عمر این بدبینی از او جدا نگردید ولی با وجود همه این گرفتاریها و در حالیکه نوشته بود مرگ بر این زندگی ترجیح دارد. تئوری اجسام آسمانی روی مقاطع مخروطی حل خورشید را انتشار داد و در سال 1811 مسیر ستاره دنباله دار عظیمی را محاسبه نمود و در همین سال تئوری متغیر موهومی را بیان کرد. ولی از دیگران مخفی نگهداشت بطوریکه کوشی ریاضی دان معروف دوباره مجبور به کشف آن شد و بدین ترتیب 50 سال علم ریاضی عقب بود. در سال 18333 تلگراف الکتریکی را ساخت و دو کتاب یکی در سال 1827 بنام تجسسات عممی درباره سطوح منحنی و یکی در سالهای 1843 و 1846 تحت عنوان تجسماتی درباره مسائل مربوط به مساحی عالمی منتشر ساخت و در این هنگام بود که تمام مردم معتقد بودند که گاوس بزرگترین ریاضیدان جهان است ولی گاوس به این افتخارات اهمیت نمی داد و هیچکس را نزد خود نمی پذیرفت و از خانه خارج نمی شد و تنها درمدت27 سال فقط یکبار برای شرکت در کنگره علمی به برلین مسافرت کرد. گاوس فقط با زنی بنام سوفی ژرمن اهل فرانسه ارتباط داشت این زن در سال 1816 از طرف آکادمی علوم پاریس به اخذ جایزه بزرگ ریاضیات نائل شد و گاوس به آثار والتر اسکات و ژان پول علاقه فراوان داشت در 70 سالگی به فکر آموختن زبان روسی افتاد گاوس اکتشاف خود را طی سال های 1796 تا1714 در 19 صفحه که شامل 146 اکتشاف مهم بود در سال 1898 منتشر ساخت این جزوه چندصفحه ای گنجینه بزرگی بود که دانشمندان را به کلی حیران نمود.
گاوس اکتشاف خود را همیشه بصور ت معما یادداشت می نمود و معتقد بود که فقط برای خود مطالعه می کند. وی هنگامی که در دانشگاه تحصیل می کرد کتاب خود را بنام تجسسات حسابی تمام کرد و تئوری اعداد را که تا آن زمان شکل واقعی به خود نگرفته بود بصورت دانش حقیقی درآورد لاگرانژ ریاضیدان معروف در مورد کتاب گاوس چنین اظهار داشته است. کتابی را بعنوان تجسسات حسابی منتشر نموده اید مقام علمی شما را تا ردیف بزرگترین ریاضیدانان جهان بالا برده است و قسمتی از آن که شامل اکتشافات تحلیلی است تاکنون نظیرش بوجود نیامده است. مقارن با انتشار کتاب گاوس در سال 1801 پیازی ستاره کوچک سرس را کشف نموده بود و منجمین درصدد محاسبه مدار آن برآمدند ولی محاسبه آن به استفاده از اعدادی منجر شد که چند کیلومتر طول داشتند و گاوس ریاست رصدخانه گوتینگن را به دست آورد. گاوس در سالهای آخر زندگی مورد توجه و محبت عمومی قرار داشت ولی آنقدر که شایستگی داشت از نعمت خوشبختی بهره مند نبود. درا بتدای سال 1855 کم کم از تصلب عضلات قلب و اتساع حفره های ریوی رنج می برد و آثار آب آوردن در او هویدا شد. آخرین نامه ای که نوشت خطاب به سردیویه یوستر« فیزیکدان انگلیسی» و درباره اکتشاف تگراف الکتریکی بود صبح روز 23 فوریه 1855 در سن 78 سالگی با آرامش کامل جان سپرد در قلمرو ریاضیات نام او تا ابد جاوید خواهد ماند.
تأملی بر سرگذشت اورایست گالوا، ریاضیدان بدشناس فرانسوی
ریاضیدانان بزرگ معمولاً سرگذشتی غیرداستانی دارند یا بطور دقیق تر، داستان زندگی آنها را نوآوری ها و دستآوردهای ریاضیاتشان تشکیل میدهد که غیر ریاضیدان ها به سختی می توانند آن را درک کند بزرگترین استثناء این قاعده اواریست گالوا است. آنچه از زندگی گالوا میدانیم بیشتر شبیه به یک داستان رمانتیک و بلکه تراژدی است. زیرا در تراژدی حتماً نباید قهرمان داستان به طرز فیجعی کشته شود بلکه تراژدی را می توان بعنوان سرکوب نمودن نبوغ یک نابغه و در نظر نگرفتن و توجه نکردن به او نیز دانست.
اواریست گالوا را حتی کسانی که دستی بر ریاضیات دارند، هم نمی شناسند چه رسد به افراد عادی که بیشتر ریاضیدانان بزرگ و مشهوری چون نیوتن، اویلر و ...... را می شناسند. اواریست گالوا را حتی دانشجویان هم بخوبی نمی شناسند.
« اواریست گالوا را بهتر بشناسیم .....
ریاضیدان نابغه فرانسوی(1832-1811) از بنیانگذاران جبر نوین و پایه گذار نظریه گروههاست. وی در عمر کوتاه خود( 21 سال) توانست شرایط امکان حد معادلات بوسیله رادیکالها را بررسی کند.
گالوا در نزدیکی پاریس از والدین تحصیل کرده متولد شد و پس از تحصیل نزد مادرش، در 12 سالگی وارد مدرسه شد. در کارهای جاری مدرسه میانه حال بود.
اثر لژاندر دست یافت تحت تأثیر آن قرار گرفت. می گویند که او این کتاب را مانند یک داستان خوانده است و با Elements de Geometrie هنگامی که به کتاب یک بار خواندن بر آن احاطه یافته است.
او سپس به کارهای لاگرانژ و آبل پرداخت و در سن 15 سالگی یک خواننده ی حرفه ای بود و خود شروع به کشفیات کرد. متأسفانه کارهایش منظم نبود. و اکثر محاسبات را ذهنی انجام داده و فقط نتایج را یادداشت می کرد.
او دوبار برای پذیرفته شدن در مدرسه ی پلی تکنیک تلاش کرد و به دلیل عدم آمادگی اساسی رد شد. دراین رد شدنها خسران زیادی برای علم ریاضیات بود زیرا این مدرسه که ریاضیدانان بزرگی را تربیت کرده بود می توانست استعداد گالو را کشف کند و محیط لازم را برای وی فراهم آورد.
با این حال گالوا به کشفیات در معادلات چندجمله ای ادامه داد و در سال 1829 بعضی از نتایجش را به آکادمی علوم تسلیم نمود. داور، گشی بودکه توانایی درک آنها را داشت، ولی گشی دستنویس های گالوا را گم کرد و دیگر پیدا نشد!! گالوای شعاع کارهایش را در مسابقه سال 1830 جایزه ی بزرگ آکادمی در ریاضیات شرکت داد. ولی « فوریدا » مقاله را با خود به خانه برد و قبل از خواندن آن مقاله فوت کرد . پس از این ماجرا،گالوا نسخه ی دوم مقاله اش را به آکادمی فرستاد اما این بار« پواسون» آن را خواند و آن را ناقص اعلام کرد.
به خاطر این وقایع یا بخاطر آنکه پدرش طرفداری جمهوری بود. گالوا به تنقید از رژیم بوربونها دست زد و به گارد ملی، یعنی سازمان جمهوریخواهان، پیوست. دراین زمان فرانسه گرفتار آشوب های سیاسی بود و گالوا مرتب به زندان می افتد. اما در سال 1832 آزاد شد. در همین زمان گرفتار عشق دختری شد. جزئیات این امر روشن نیست، اما یک چیز واضح است که او درگیر یک دوئل برای رسیدن به این دختر شد. گالوا تصمیم گرفت این دوئل را انجام دهد گالوا در شب قبل از مرگش در این دوئل می نویسد:« من قربانی یک زن عشوه گر گمنام شده ام..... این یک نزاع اسف بار است که جان مرا می ستاند. آه چرا باید برای یک موضوع بی ارزش بمیرم...» او همچنین نامه ای به دوستش نوشت و کشفیات خود را بطور خلاصه بیان کرد. این یک سند غم انگیز و دل خراش بجا مانده از گالوا است که در حاشیه اش نوشته:« من وقت ندارم». این سند که با خواهش از ژاکوبی یا گاوس برای اینکه نظرشان را "نه در مورد درستی بلکه در مورد اهمیت این قضایا" بیان می کنند پایان می یابد.
صبح روز بعد این دوئل انجام شد دوئل با طپانچه در 25قدمی صورت گرفت. تیر به شکم گالوا خورد و به زمین افتاد تا آنکه دهقانی که از آنجا عبور می کرد او را به بیمارستان Montparmasse رساند . گالوا روز بعد یعنی31ماه می سال 1832 در سن 20 سالگی فوت کرد و در بخش عمومی قبرستان مونت پارناس به خاک سپرده شد.
محمدبن موسی خوارزمی
محمدبن موسی خوارزمی از دانشمدان بزرگ ریاضی و نجوم می باشد شهرت علمی خوارزمی مربوط به کارهایی است که در ریاضیات مخصوصاً در رشته جبر انجام داده بطوریکه هیچ یک از ریاضیدانان قرون وسطی مانند وی در فکر ریاضی تأثیر نداشته اند.
خوارزمی کارهای دیوفانتوس را در رشته جبر دنبال کرد و به بسط آن پرداخت، خود نیز کتابی در این رشته بنام(جبر و مقابله) نوشت معمولاً در حل معادلات دو عمل معمول است. خوارزمی این دو را تنفیح و تدوین کرد و از این راه به واردساختن جبر به مرحله علمی کمک شایانی انجام داد.
خدمات شایان دیگر خوارزمی به جهان علم این است که وی حساب هندی و ارقام هندی را در دنیای متمدن انتشار داد.
اروپائیان را با استعمال صفر برای نشان دادن مرتبه خالی آشنا ساخت. هنگامی که درقرن دوازدهم کتاب خوارزمی به زبان لاتین ترجمه شد این ارقام که به غلط در« ارقام عربی» نامیده می شوند از طریق آثار فیتونانجی به اروپا وارد گردید. همین ارقام است که انقلابی در ریاضیات بوجود آورد و هرگونه اعمال محاسباتی را مقدور ساخت. باری کتاب جبر و مقابله خورازمی قرنها در اروپا مأخذ و مرجع دانشمدان و محققین بوده و بوهاسن هبسبانیس و گراردوس کرمونسیس و رابرت جستری در قرن دوازدهم هر یک آن را به زبان لاتین ترجمه کردند. خوارزمی در سایر رشته های علوم و مخصوصاً نجوم هم کارهای جالب و سودمندی انجام داد. ازجمله دو کتاب در اصطرلاب نوشت.
اطلسی از نقشه آسمان و زمین تهیه کرد و نقشه های جغرافیایی بطلمیوس را اصلاح کرد.
آثار و تصنیفات خوارزمی
محمد بن موسی خوارزمی
این دانشمند بزرگ در سال 820- م ( در زمان خلافت بنی عباس در بغداد) در حدودبین سالهای 200-195 هجری کتابی به نام جبر و مقابله را نوشت که در آن به هیچ وجه از حروف و علامات استفاده نشده بود ولی حل معادلات را به دو طریق که ما امروز جمع جبری- عمل متشابه ونقل جمعی از یک طرف به طرف دیگر می نامیم انجام می داد. اگر نتوانیم محتوی این کتاب را هنوز علم جبر جدید بنامیم از آنجا که اساس این کتاب براستفاده از علائم اختصاری بوده است، میتوان لااقل پیدایش آن را یکی از مراحل مهم علم جبر دانست برای رسیدن به نتیجه قطعی فقط می بایست یک قدم برداشت از قرار معلوم این قدم چندان سهل نبوده است زیرا مدت هفت قرن و نیم طول کشید تا این کار آخری نیز انجام شد. بنابراین خوارزمی نخستین کسی است که علم جبر را پایه گذاری نموده و یکی از مراحل مهم این علم را پیدا نموده است. استخراج التاریخ زیج اول و زیج ثانی که این دو زیج بسند هند معروف و محل اعتماد اهل فن بوده است.
دیگر صوره الارض با رسم افریقیه می باشد و عمل الاسطرلاب مختصر من الحساب و الجبر والمقابله که در لندن چاپ شده که مشهورترین تألیفات اسلامی علم جبر همین کتاب جبر و مقاله خورازمی است که ظاهراً پس از اطلاع از علم جبر در یونان و ایران و هند جبر عربی را استخراج کرد همانطور که زیج خوارزمی جامع افکار و آرای علمای هند و ایران و یونان در آن موضوع می باشد و شارحین اسلامی کتاب خوارزمی را مکرر شرح داده اند. دیگر استخراج تاریخ الیهود و اعبادهم( تاریخ یهود و عبدهای آنان) بهرحال کتب یونانی( فلسفی و علمی) چون این علوم بیگانه به عربی ترجمه می شد و حساب هم جزء آن علوم ترجمه رایج گشت و مهندسان و هیئت شناسان حساب آموختند ولی کسی که فقط متخصص در حساب باشد میان مسلمانان کم بوده، از بزرگترین ما در تمدن اسلام آنکه حساب هندی و ارقام هندی را در دنیای متمدن انتشار دادند عربها این ارقام را هندی می گویند زیرا از هندیها آموخته اند و فرنگی ها آنرا عربی می نامند چون از عربها گرفته اند.
نخستین کسی که این ارقام را از هندی به عربی انتقال داد ابوجعفر محمدبن خوارزمی مذکور در فوق می باشد که او در جدولها رقم های هندسی را بکار برد و این کار در سال 197 هجری قمری انجام گرفت، این جدول ها مبناء و ماخذ کارهای منجمان بوده و از همان کلمه ی الخوارزم اروپائیان لفظ الگوریزم را ساخته اند. در زبانهای اروپایی که اساس محاسبه بر مبنای اعشاری ده را با الگوریتم می گویند اصل آن همان کلمه الخوارزمی است.
مسلمانان در وضع و شرح علوم از جمله علم جبر حق تقدم داشتند زیرا از ترجمه علوم یونانی، دو کتاب که در علم جبر که یکی تألیفات،دیوفانتوس و دیگری تألیف ابرخس بود و به عربی ترجمه شده بود بسیار ناچیز بوده است.
چنانکه اکنون علمای فن هم پس از بررسی و تحقیق در این موضوع تشخیص داده اند که دو کتاب مزبور( در عالم جبر) که از یونانی به عربی ترجمه شده چیز مهمی نبوده و اساس علم جبر را مسلمانان و عرب ها وضع کردند و اروپائیها علم جبر را از کتبی که مسلمین نوشته اند استفاده کرده اند.
عبارت جبری
به عبارت ریاضی که روی مجموعه اعداد بیان شده باشد، عبارت جبری گفته می شود. هر عبارت جبری شامل نمادها، و حرفهایی است که بیانگراعدادندو شامل نشانه های مربوط به روابط و عملیاتی است که باید روی آن اعداد عمل شود.( از این نظر که به کار بردن حروف و علامات نخستین بار در علم جبر معمول شده است در بعضی از نوشته ها، آثار، هر عبارت تحلیلی را عبارت جبری نامیده اند) در هر عبارت جبری، عددها، حرفهایی را که جا نگهدار عددهای معین و مشخص باشند مقادیر معلوم وحرف هایی را که نمایانگر عددهای غیرمشخص باشند مقادیر متغیر یا متغیرهای آن عبارت می نامند. به حرفهای نشان دهنده های مقادیر معلوم پارامتر نیز میگویند. هر عبارت جبری برحسب متغیرها، یا متغیرهای آن عدد می شود و برحسب تعداد متغیرها آن را عبارت یک متغیری،عبارت دومتغیری،.... یا عبارات چندمتغیری می نامند عبارت با یک متغیر x را با و عبارت با تغییر متغیرهای را با نشان می دهند مانند:
دسته بندی | ریاضی |
بازدید ها | 22 |
فرمت فایل | doc |
حجم فایل | 245 کیلو بایت |
تعداد صفحات فایل | 21 |
کاربرد روش L1 – تقریب در معادلات انتگرال تکین
- مقدمه: معادلات انتگرال را میتوان با استفاده از فن LP – تقریب (به ویژه L1 تقریب) به طور موثری حل کرد. در این متن فن کلی را مورد بحث قرار میدهیم و سپس آن را با حل چند معادله انتگرال مختلف توضیح میدهیم. علاوه برامتیازات دیگر، این روش به طور موفقیت آمیزی در مورد معادلات انتگرال تکین و همین طور معادلات انتگرال قویاً تکین (نظیر انتگرال های آدامار یا متناهی – قسمت) تعمیم داده شده و به کار رفته است. در بحث حاضر، مروری بر این مطالعه ارائه میشود.
2- مقدمات ریاضی :
به طور کلی هدف این متن عبارت است از کاربرد فن LP- تقریب در حل یک معادله انتگرال فردهولم (خطی یا غیر خطی) نوع اول یا دوم به صورت
در معادلة بالا تابع هدایتگر و هسته K توابعی معلوم اند، در حالی که تابع مجهول است که باید آن را بیابیم پارامتر نیز معلوم است. مساله کلی LP- تقریب پیوسته را میتوان به صورت زیر فرمول بندی کرد:
تابع f معین روی یک بازة حقیقی مانند x همراه با یک تابع تقریب مانند F(A)، که به متغیر n پارامتری A=(a1 , …,an) در Rn وابسته است، مفروض اند.
در این صورت مساله LP- تقریب پیوسته به این معنی است که باید برداری مانند به گونه ای بیابیم که به ازای هر رابطة :
برقرار باشد.
جنبة اصلی مساله که باید مورد بحث واقع شود فرمول بندی مجدد مساله معادله انتگرال به صورت یک مساله LP- تقریب است. برای این منظور، فرض کنیم بتوان تابع جواب را با تابع F(A)، که ممکن است خطی یا غیر خطی باشد، تقریب زد. اگر این تقریب را در معادله انتگرال بگذاریم، رابطة زیر به دست میآید:
در آن صورت مساله تقریب را میتوان بر حسب LP- نرم به صورت:
بیان کرد که در آن F(A,x) نسبت به A روی Rn و نسبت به x روی [a,b] تعریف شده است. توجه داشته باشید که میتوان عبارت
را تابعی مانند تلقی کنیم که فقط به A بستگی دارد. پس میتوان مسأله تقریب را به عنوان یک مسأله مینیمم سازی غیر مقید وابسته به n متغیر an,...,a1 در نظر گرفت. بنابراین، J فقط باید نسبت به این متغیرها مینیمم شود. در نتیجه، با حل مسأله مینیمم سازی بالا امکان حل تقریبی معادله انتگرال وجود دارد.
برای مطالعة درباره جزئیات این فن (و از جمله آنالیز ریاضی) مراجع [19] , [18] تالیف De Klerk را ببینید.
در این مرحله دو تفسیرزیر ضروری اند:
مقادیر مخلتف P را میتوان مورد استفاده قرار داد. برای مثال به ازای P=1 مسأله منجر میشود به مسأله کمترین قدر مطلق و به ازای P=2 مسأله منجر میشود به مسألة کمترین مربعات. دلیلی وجودندارد که مقادیر مثبت دیگر P را در نظر نگیریم. حالت P=2 را بیشتر می شناسیم، در حالی که حالت P=1 کمتر آشناست. بنابراین احساس میشد که این حالت باید حاوی چالش های عددی جالبی (در رابطه با قدر مطلقی که در انتگرالده ایجاد می شود) باشد. توجه داشته باشید که خطی یا غیر خطی بودن انتگرالده بالا نسبت به A بستگی به تابع تقریب F(A) و هسته K دارد. در روش عددی ای که در اینجا مورد بحث قرار میگیرد تمایز خاصی بین خطی یا غیر خطی بودن قائل نمیشویم.
3- شیوة عددی و مثال ها :
فن عددی در اصل از دو شیوة عددی تشکیل شده است، یعنی شیوة مینیمم سازی و شیوة انتگرال گیری.
مینیمم سازی با استفاده ازیک الگوریتم استاندارد بهینه سازی انجام میگیرد. الگوریتم UMPOL در IMSL Library که بر پایة روش «سیمپلکس داون هیل» از نلدر و مید (به مثال [37] تالیف Press مراجعه کنید)، که گر چه زیاد سریع نیست اما این مزیت را دارد که بسیار قوی است و به مشتق گیری ها نیازی ندارد. در واقع ماشین سر به زیری است که معمولاً مقدار مینیمم یک تابع را به درستی مییابد . همچنین
De Klerk در [20] متذکر شده است که روش لووس- جاکولا [34] نیز روشی قوی است که به مشتق گیری ها نیازی ندارد و بررسی بیشتر جواب هایی که با بهره گیری ازاین روش بدست می آیند را مفید دانسته است.
انتگرال گیری عددی با استفاده از فن کوادراتور اتوماتیکی که ونتر و لاوری [3] با یک انتگرالده به صورت g(|f(x)|) آورده اند، انجام میشود. برای بدست آوردن این شیوه این محققین رویة انتگرال گیری تطبیقی استاندارد QAGE را تغییر داده اند (از QUAD PACK تالیف [35] Piessens ). در حین فرایند انتگرال گیری، با استفاده ازمقادیر موجود برای تابع، صفرهای تابع پیدا میشوند که از آنها (صفرهای تابع) به عنوان نقاط تقسیم در انتگرال گیری استفاده میکنیم.
در [20] ذکر شده است که ونتر ولاوری این روش را با موفقیت بالایی امتحان کرده اند، همچنین در پایان نامه دکتری ونتر نیز از بکارگیری این روش نتایج خوبی بدست آمده است [8].
De Klerk در [18] نتایج رضایت بخشی را با استفاده از این استراتژی تقریب بدست آورده است.
بر خلاف بسیاری روش های دیگر، با استفاده از روشی تقریبی نظیر روش یاد شده، در ساختن جواب نیز آزادی عمل بیشتری داریم (مثلا می توان توابع گویا و توابع مثلثاتی را بکار برد).
با اینکه داشتن تجربه در ارتباط با انتخاب یک تابع تقریب لازم است اما این امر موجب کنار گذاردن روش مذکور نمی شود.
De Klerk با در نظر گرفتن مثال های زیر، برخی از نتایج اصلی سال های گذشته را به بحث میگذارد.
مثال (1- ) پارامتر به سمت یکی از مقادیر ویژه مسأله میل میکند.
هسته جدایی پذیر زیر را در نظر بگیرید، داریم :
که در آن دو مجموعه از توابع مستقل خطی هستند.
در این حالت معادله انتگرال فردهولم به طور کلی یک و فقط یک جواب دارد. تنها استثنا وقتی است که یکی از مقادیر ویژه هسته را به خود میگیرد که در این حالت مسأله جواب ندارد (Tricomi [9]) . مثال بعد کارایی فن مذکور را نشان میدهد. معادله انتگرال فردهولم نوع دوم زیررا در نظر بگیرید.
دسته بندی | ریاضی |
بازدید ها | 19 |
فرمت فایل | doc |
حجم فایل | 89 کیلو بایت |
تعداد صفحات فایل | 26 |
کارایی الگوریتم مسیریابی شکسته شده برای شبکه های چندبخشی سه طبقه
چکیده:
این مقاله شبکه های سویچنگ سه طبقه clos را از نظر احتمال bloking برای ترافیک تصادفی در ارتباطات چند بخشی بررسی می کند حتی چنانچه سویچ های ورودی توانایی چند بخشی را نداشته باشند و نیاز داشته باشند به تعداد زیاد وغیرمجازی از سویچهای میانی برای فراهم کردن این مسیرهایی که پلاک نشوند مطابق درخواستها مدل احتمالی این دید را به ما میدهد که احتمال پلاک شدن در آن بسیار کاهش یافته و تقریبا به صفر می رسد در ضمن اینکه تعداد سویچهای میانی بسیار کمتر از تعداد تئوریک آن است.
در این مقاله یک الگوریتم مسیریابی شکسته شده را فعال پلاک شدن در آن معدنی شده است برای اینکه قابلیت مسیریابی با fanout بالا را برآورده کند. ما همچنین مدل تحلیلی را بوسیله شبه سازی کردن شبکه بر روی
فهرست اصطلاحات: چند بخشی، ارزیابی عملکرد، مدل احتمالی، شبکه های سویچینگ
معدنی:
شبکه های clos بخاطر انعطاف پذیری وساده بود نشان بطور گسترده در شبکه های تلفن، ارتباطات Data و سیستمهای محاسبه ای موازی بکار برده می شوند. کارایی خیلی از برنامه های کاربردی بوسیله یک عمل چند بخشی موثر که پیغامی را به چند دریافت کننده بصورت همزمان می فرستد بهتر می شود. به عنوان مثال در سیستمهای چند پردازنده ای یک متغیر همزمان سازی قبل از آنکه پرازنده ا بکارشان ادامه دهند باید فرستاده شود. همانطوریکه برنامه های کاربردی به خدمات چند بخشی موثر که توسعه پیدا کرده نیاز دارند در طی چند سال اخیر حتی در شبکه های با دامنه عمومی طراحی سیستمهای سویچینگ که بطور موثر بادرخواستهای چندبخشی سروکار دارد نیز اهمیت پیدا کرده است.
تلاشهای زیادی برای سازگار کردن شبکه های clos (که در ابتدا برای ارتباطات نقطه به نقطه توسعه پیدا کرده بودند) برای آنکه با ارتباطات چند بخشی وفق پیدا کنند انجام شده است.شبکه clos چند بخشی با قابلیت پلاک نشدن هنوز بسیار گران در نظر گرفته میشوند برای همین کارایی آن را روی پیکربندی های کوچکتر از معمول در نظر نمی گیرند.
یک شبکه clos سه طبقه بوسیله نشان داده می شود که سویچهای طبقه ورودی m سویچهای لایه میانی و سویچهای لایه خروجی است، هر کدام از سویچهای لایه ورودی تاپورت ورودی خارجی دارند و به هر کدام از سویچهای لایه میانی اتصال دارد بنابراین ارتباط بین طبقه ورودی وطبقه میانی وجود دارد . هر سویچ طبقه خروجی عدد پورت خروجی دارد و به هر کدام از سویچها یک درخواست اتصال نشان داده میشود به شکل c(x,y) که در آن x یک سویچ ورودی و را یک مجموعه مقصد از سویچهای خروجی است.
چندی /1 درجه fanout درخواست نامیده می شود. به یک مجموعه از درخواستهای اتصال سازگار گفته می شود اگر جمع تصادفات هر کدام از سویچهای ورودی از بزرگتر نباشد وجمع تصادفات کدام از سویچهای خروجی بزرگتر از نباشد.
یک درخواست با شبکه موجود سازگار است اگر تمام درخواستها و همچنین درخواست جدید سازگار باشد در شکل (1) برای نمونه با پیکربندی موجود سازگار است ولی سازگار نیست جون سویچ خروجی شماره 1 درخواست را قبلا حمل کرده است. یک خط سیر برای درخواست اتصال جدید یک درخت است که سویچ ورودی x را به مجموعه /1 تا سویچ خروجی از میان سویچهای میانی متصل می کند. یک درخواست اتصال قابل هدایت است اگر یک مسیر روی تمامی اتصالات بین طبقه ای پیدا کند وبتواند ردر انحصار قرار دهد.
ماسول و جدول برای اولین بار nonblacking محض /1 وشبکه clos سه طبقه قابل بازآیی را برای اتصالات چندگانه که اتصالات بین هر تعداد از سویچهای ورودی وسویچیهای خروجی بوجود می آورد را معدنی کردند.
هرانگ قابلیت بازایی وخواص nonblaking شبکه های clos چند بخشی را تحت شرایط مختلف ومحدودیت های fonout مورد بررسی قرار داد
یانگ وماسول اولین تحلیل خود را که اجازه می داد سویچهای هر طبقه برای کاهش نیازهای سخت افزاری همانند سازی کند را انجام دادند آنها ثابت کردند که اگر تعداد سویچهای میانی o(nlogr/logloyr) باشد آنگاه شبکه nonblacking بوجود آمده است که تمام درخواستها از حداکثر k عدد سویچ میانی استفاده می کند که k نیز ثابت می باشد. علاوه بر مطالعات شبکه های clos چندبخشی nonblamking چندین تلاش رویکرد برای تعیین رفتاری blacking شبکه های swiching برای ارتباطات نقطه نقطه وجود داشت.
این تحقیق مدلهای احتمالی را را که بصورت نزدیکی رفتار شبکه های سویچینگ سه طبقه ای را تخمین می زند را تامین می کند.
برای ارتباطات چند بخشی هرانگ ولین یک مدل blocking از درخواستهای چند پخشی قابل بازآرایی را در شبکه clos نقطه به نقطه nonblocking با فرمول c(n,r,2n-1) پیشنهاد کردند. یانگ ووانگ رفتار blaocking درخواستهای چند پخشی را روی شبکه clos بوسیله بسط دادن مدل بررسی کردند
دسته بندی | ریاضی |
بازدید ها | 25 |
فرمت فایل | doc |
حجم فایل | 494 کیلو بایت |
تعداد صفحات فایل | 18 |
عدد طلایی
دنیای اعداد بسیار زیباست و ما می توانیم در آن شگفتی های بسیاری را بیابیم. در میان برخی از آنها اهمیت فوق العاده ای دارند، یکی از این اعداد که سابقه ی آشنایی بشر با آن به هزاران سال پیش از میلاد می رسد، عددی است به نام نسبت طلایی یا Golden Ratio.
اگر پاره خطی را در نظر بگیریم و فرض کنیم که آنرا بگونه ای تقسیم کنیم که نسبت بزرگ به کوچک معادل کل پاره خط به قسمت بزرگ باشد، اگر معادله ساده یعنی را حل کنیم. ( کافی است به جای b عدد یک قرار دهیم، بعد a را بدست آوریم)، به نسبتی معدل تقریباً 1/61803399 یا 1/618 خواهیم رسید. شاید باور کردنی نباشد، اما بسیاری از طراحان و معماران بزرگ برای طراحی محصولات خود امروز از این نسبت طلایی استفاده می کنند، چرا که به نظر می رسد ذهن انسان با این نسبت انس دارد و راحت تر آن را می پذیرد.
این نسبت نه تنها توسط معماران و مهندسان برای طراحی استفاده می شود، بلکه در طبیعت نیز کاربردهای بسیاری دارد.
به نسبت بین خط های صورت این تصویرها نسبت طلایی گفته می شود.
اهرام مصر
یکی از قدیمی ترین ساخته های بشری است که در آن هندسه و ریاضیات بکار رفته شده است.
مجموعه اهرام GIZA در مصر که قدمت آنها به بیش از 2500 سال پیش از میلاد می رسد، یکی از شاهکارهای بشری است، در آن نسبت طلایی بکار رفته است. به این شکل نگاه کنید که در آن بزرگترین هرم از مجموعه ی هرم GIZA خیلی ساده کشیده شده است.
مثلث قائم الزاویه ای که با نسبت های این هرم شکل گرفته شده باشد به مثلث قائم مصری یا Egyptian Triangle معرف هست و جالب اینجاست که بدانید نسبت وتر به ضلع هم کف هرم معادل با نسبت طلایی یعنی دقیقاً 1/61804 میباشد. این نسبت با عدد طلایی تنها در رقم پنجم اعشار اختلاف دارد، یعنی چیزی حدود یک صد هزارم . حال توجه شما را به این نکته جلب می کنیم که اگر معامله فیثاغورث را برای این مثلث قائم الزاویه بنویسیم به معادله ای مانند خواهیم رسید که حاصل جواب آن همان عدد معروف طلایی خواهد بود. معمولاً عدد طلایی را با نمایش می دهند.
طول وتر برای هرم واقعی حدود 356 متر و طول ضلع مربع قاعده حدوداً معادل 440 متر می باشد، بنابریان نسبت 356 بر 320 معادل نیم ضلع مربع، برابر با عدد 1/618 خواهد شد.
کپلر ( Gohannes Kepler 1571-1630)
منجم معروف نیز علاقه ی بسیاری به نسبت طلایی داشت، به گونه ای که در یکی از کتاب های خود اینگونه نوشت: "هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه ی فیثاغورث و دومی رابطه ی تقسیم یک پاره
خط به نسبت طلایی می باشد. اولین گنج را به طلا و دومی را به جواهر تشبیه کرد."
تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف می باشد. کپلر پی به روابط بسیار زیبایی میان اجرام آسمانی و این نسبت طلایی پیدا کرد.
آشنایی با سری فیبونانچی
باورکردنی نیست، اما در سال 1202 لئونارد فیبونانچی توانست به یک سری از اعداد دست پیدا کند، که بعدها به عنوان پایه برای بسیاری از رابطه های فیزیک و ریاضی استفاده شد، کافی است از عدد صفر و یک شروع کنید، آنها را کنار هم بگذارید و عدد بعدی را از جمع کردن دو عدد قبل بدست آورید، به سادگی به این رشته از اعداد خواهید رسید:
البته برخی از ریاضی دانان عدد صفر را جزو رشته فیبونانچی نمی دانند و یا حداقل آن را جمله ی صفرم سری می دانند، نکته ای که تعجب برانگیز است آنکه اگر از عدد سوم نسبت اعداد این سری را به عدد قبلی حساب کنیم خواهیم داشت:
1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, 55/34, 89/55, 144/89.000
و یا :
1, 2, 1.5, 1,666, 1.6, 1,625, 1.6153, 1.6190, 1.6176, 1.6181, 1.6179
بله بنظر می رسد که این رشته به سمت همان عدد طلایی معروف میل میکند. بگونه ای که اگر نرخ عدد چهلم این رشته را به عدد قبلی حساب کنیم به عدد 1.618033988749895 می رسیم که با تقریب 14 رقم اعشار نسبت طلایی را نشان می دهد.
بعدها محاسبات و استدلال های ریاضی نشان داد که این سری همگرا به سمت نسبت طلایی می باشد و جمله عمومی آنرا با بتقریب می توان اینگونه نمایش داد :
دسته بندی | ریاضی |
بازدید ها | 22 |
فرمت فایل | doc |
حجم فایل | 77 کیلو بایت |
تعداد صفحات فایل | 29 |
ریاضیات گسسته
مقدمه:
تاریخچه ریاضیات گسسته
پیشرفتهای سریع تکنولوژی در نیمه دوم قرن یبستم به ویژه پیشرفتهای شگفت آور علوم کامپیوتر، مسائل جدید را مطرح کردندکه طرح و حل آنها روشها و نظریه های تازه ای می طلبد. طبیعت متناهی و گسسته بسیاری از این مسائل موجب شده است که روشها و قواعد گوناگون شمارش از اهمیت خاصی بر خوردار شوند. توفیق مفاهیم لازم برای بررسی این مسائل به کار گیری منطق ریاضی و نظریه مجموعه ها را اجتناب ناپذیر ساخته است.
معادلات تفاضلی، روابط بازگشتی، توابع مولد، از دیگراجزایی هستند ک در حل مسائل مورد بحث نقشی اساسی دارند از طرف دیگر هنگام بررسی مسائل مربوط به مدارها، شبکه های حمل و نقل، ارتبا طات بازاریابی و غیره نقش جایگزین ناپذری گرا فها قا طعانه آشکار می شود.
ریاضیات گسسته مقدماتی متنی فشرده برابر یک دوره ریاضیات گسسته در سطحی مقدماتی برای دانشجویان کارشناسی علوم کامپیوتر و ریاضیات است. مولفه های اساسی برنامه کار ریا ضیات گسسته در سطحی مقد ماتی عبارتند از : ترکیبات نظریه گرا فها همراه با کار بردهایی در چند مسئاله استاندارد بهینه سازی شبکه ها، الگوریتمهایی برای حل این مسائل مهم اتحادیه سازندگان ماشینهای محاسبه و مهم کمیته برنامه ریزی یرای کارشناسی ریا ضی بر نقش حیاتی یک دوره درسی روشهای گسسته در سطح کارشناسی که دانشجویان را به حیطه ریاضیات ترکیباتی و ساختارهای جبری و منطقی وارد کند و روی ارتباط متقابل علوم کامپیوتر و ریاضیات تأکید داشته باشد صحه گذاشته اند.
جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستانی
در جریان تغییر نظام آموزش دوره های کارشناسی ریاضی در سالهای اخیر در دانشگاهها و موسسات آموزش عالی شاهد بودیم که درسهای جدید به تنا سب گرایشهای این رشته جایگزین درسهایی از نظام قبلی شدند. درس ریا ضیات گسسته نیز به ارزش 4 واحد درسی در این راستا بعنوان یکی از واحدهای پایه همه گرایشهای دوره کارشناسی ریاضی در نظر گرفته شده است. در کتابهای درسی ریا ضی نظام جدید دبیرستان نیز شاهد گنجاندن مفاهیم پایه ای مربوط به مباحث مقدماتی ریاضیات گسسته مانند نظریه گراف و دنباله ها و آمار و احتمال و ... می باشیم.
همچنین در دوره پیش دانشگاهی نیز درسی جداگانه تحت عنوان ریاضیات گسسته در نظر گرفته شده است. از آنجا که این شاخه از ریاضی نیاز مند بحث و تبادل نظر از لحاظ آموزشی و تعیین جایگاه و ارتباط آن با سایر شاخه ها و موضوعات ریاضی می باشد.
مطالبی که در این قسمت از بحث طرح خواهد شد بیشتر بر اساس مقاله ای است که تحت عنوان »آموزش ریاضی گسسته در دوره دبیرستان« توسط پروفسور آ.کاتلین
در مجلة بین المللی ریاضیات، علم و تکنولوژی 1990 درج شده است.
» انقلاب کامپیوتری، ریاضیات گسسته را همانند حساب دیفرانسیل و انتگرال برای علم و تکنولوژی ضروری ساخته است.«
محتوای کلی ریاضیات گسسته
محتوای دقیق یک دوره ریاضیات گسسته هنوز تا حدودی به طور مبهم باقیمانده است، زیرا هم کتابهایی که تاکنون در این زمینه به رشته تحریر در آمده و هم برنامه های درسی که در این مورد از سوی برنامه ریزان مباحث درسی ریاضی تهیه وتنظیم می شود، دقیقاَ نتوانسته اند موضوعات و قلمرو مباحث این درس را مشخص نمایند. موضوعاتی از قبیل نظریه اعداد و آمار و احتمالات و جبر خطی آنالیز عددی و مباحسات و برنامه سازیهای کامپیوتری ضمن اینکه در ریاضیات پیوسته جای پای محکمی دارند، در ریاضیات گسسته نیز خودنمایی و شکوفای روز افزون دارند. با این حال می توان گفت که ریاضیات گسسته شامل مباحثی است که مراحل مربوط به تغییرات گسسته و کمیتهای گسسته را توصیف می کند، در مقابل کالکوس که مراحل تغییرات به طور پیوسته را دنبال می کند پس به طور دقیق می توان گفت که ریاضیات گسسته کالکوس( حسابان) نیست.
به طور کلی یک دوره ریاضیات گسسته را می توان شامل عناوین زیر دانست:
منطق راضی و نظریه مجموعه ها ، ساختار های جبری از قبیل مباحث مربوط به گروهها و حلقه ها و میدانها و کواتریونها، شببکه ها جبر یون، نظریه گراف، روشهای ترکیبات و شمارش، نظریه اعداد محاسبات و الگوریتمهای عددی و تجزیه و تحلیل آنها، استقرار و روابط بازگشتی معادلات تفاضلی،آمار و احتمال با فضاهای نمونه ای گسسته.
تفاوت ریاضیات گسسته و حساب دیفرانسیل و انتگرال ( ریاضیات پیوسته)
در اساسی ترین سطح، مدلی برای بیان تفاوت بین ریاضیات گسسته و ریاضیات پیوسته ( یعنی حساب دیفرانسیل و انتگرال و شاخه هایی از آنا لیز که به حساب دیفرانسیل و انتگرال وابسته اند) تفاوت بین اعداد صحیح و اعداد حقیقی است. اعداد حقیقی، پایه همه ریا ضیاتی هستند که مانند حساب دیفرانسیل و انتگرال با خواص توابع پیوسته سر و کار دارند. در حالیکه ریاضیات گسسته بیشتر با توابعی سر و کار دارند که بر مجموعه نقاط گسسته تعریف شده اند( مثل دنباله ها) واز بسیاری جنبه ها به طور کامل با ساختمان پرشکوه آنالیز که بر پایه حساب دیفرانسیل بنا شده است و به طور عمده به توابع پیوسته می پردازد، تفاوت دارد. می دانیم که سیستم های فیزیکی از تعداد زیادی ذرات گسسته – اتمها و مولکولها – تشکیل شده است، در عمل پیوسته فرض کردن ماده فرض بسیار مناسب و دقیقی است. این سبب می شوند که اکثر پدیده ها ی طبیعی سیستمهای فیزیکی که از طریق حساب دیفرانسیل و انتگرال مدل سازی می شوند نوعاَ به صورت معادلات دیفرانسیل درآیند. این عملکرد آنچنان موفقیت شگفت انگیزی داشته است ک نتایج حاصل از آن تقریباَبرای همه مقاصد و اهداف ذاتاَ دقیق اند و موفقیت مهندسی وصنعت در قرنهای اخیر در سراسز دنیا مرهون این مدل سازی زیبا و دقیق و کار بردی ریاضی است، خصوصاَ از زمانی که پیدایش حسابگرهای رقمی و سپس کامپیوترها امکان بررسی و حل عددی معادلات دیفرانسیل و دیگر معادلات را فراهم نمودند. این آغاز شکوفایی آنالیز عددی بود نمونه متعارف از مسائلی که با استفاده از تکنیکهای آنالیز عددی حل می شوند این است که فرمول بندی یک مساله فیزیکی را با استفاده از حساب دیفرانسیل و انتگرال در نظر بگیریم و سپس آن را به شکل گسسته تبدیل کنیم تا با روشهای عددی قابل حل باشد. چنانچه در نمودار سیکلی مدل سازی ریاضی برای مسائل فیزیکی بیان گردید مرحله نهائی این پروژه زمانی قابل استفاده برای مسائل فیزیکی خواهد بود که جواب یا پیش بینی حاصلها از الگوی ریاضی ارزش عملی دانسته باشد و این امر جز به وسیله آنالیز عددی و محاسبات عددی مربوط به آن و تجزیه تحلیل خطاهای وارده و استفادهاز اصل دقت متغیر در روشهای ریاضی امکان پذری ننخواهد بود. از طزفی نیاز به ریاضیات گسسته، محدود به آنالیز عددی میشد نمی توانستیم ادعا کنیم که چنین ریاضیاتی نقش مقایسه کردنی با حساب دیفرانسیل و انتگرال دارد. آنالیز عددی با وجود کار بردهای وسیع، آن موضوعی تخصصی است نمی تواند تأثیر چشمکیری بر روند دآموزشی ریاضیات بگذارد هر چند آنالیز عددی مهمترین محل تلاقی ریاضیات پیوسته گسسته است امروزه تنها یک جزء کوچک از کار بردهای ریاضیات گسسته را دربرمیگیرد.
فهرست مطالب
- مقدمه
- جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستان 2
- محتوای کلی ریا ضیات گسسته 3
- تفاوت ریاضیات گسسته و حساب دیفرانسیل و ا نتگرال 4
- مرور تاریخی مباحث مهم ریاضیات گسسته 8
- مفهوم جاگشت 8
- اولین فن حدس زدن 8
- دیریکله 9
- تاریخچه اصل شمول و عدم شمول 9
- نظریه گراف 10
- مسئله پل کونیگسبرگ 10
- طریقه نمایش گراف 11
- گراف هامیلتونی 12
- رابطه های بازگشتی و مبادلات تفاضلی 19
- نمودار ترسیمی روشها و مدلهای گسسته و پیوسته ریاضی 25
- منابع 28
دسته بندی | ریاضی |
بازدید ها | 20 |
فرمت فایل | doc |
حجم فایل | 184 کیلو بایت |
تعداد صفحات فایل | 19 |
مبحث تابع
تعریف زوج مرتب:
هر دستة متشکل از دو عنصر با ترتیب معین را یک زوج مرتب گویند. مانند زوچ مرتب (x,y) که x را مؤلفه اول مختص اول یا متغیر آزاد گویند و y را مؤلفه دوم مختص دوم متغیر وابسته( تابع) یا تصویر گویند و نمایش هندسی آن نقطهای در صفحة مختصات قائم است که طول آن برابر x و عرض آن برابر y است.
تساوی بین دو زوج مرتب:
دو زوج مرتب با یکدیگر مساویاند اگر دو نقطه اگر مؤلفههای نظیربهنظیر آنها با هم برابر باشند یعنی:
مثال: از تساوی زیر مقادیر x,y را بیابید:
تعریف حاصلضرب دکارتی دو مجموعه :
حاصلضرب دکارتی در مجموعه B,A که با نماد نشان داده میشود عبارت است از مجموعه تمام زوج مرتبههائی که مؤلفة اول آنها از A و مؤلفه دوم آنها از B باشد یعنی:
مثال: حاصلضرب دکارتی درهر یک از مثالهای زیر را بصورت مجموعهای از زوجهای مرتب بنویسید و نمودار آن را در دستگاه محورهای مختصات قائم رسم نمائید:
(1
(2
نمودار حاصلضرب دکارتی مجموعههای داده شدة زیر را در دستگاه محورهای مختصات قائم رسم کنید.
ویژگیهای حاصلضرب دکارتی مجموعهها :
فضای دوبعدی ( صفحه) 3) , ,
4) , ,
5) مثال:
تضاد زوجهای مرتب:
تعریف ریاضی رابطه:
اگر B,A دو مجموعه دلخواه باشند هر زیرمجموعه از حاصلضرب دکارتی را یک رابطه از A در B گویند اگر f یک زیرمجموعه از باشد گویند. F یک رابطه از A در B است به عبارت دیگر رابطه Fمجموعه تمام زوج مرتبهای است که مؤلفههای اول و دوم آن با شرایطی خاص( قانون یا ضابطة خاص) به یکدیگر مربوط میشوند. به بیان دیگر رابطه f زیرمجموعهای از است که با ضابطه یا قانون خود مختص اول زوجهای مرتب را به مختص دوم آنها پیوند میدهد مانند رابطه پدر و فرزندی رابطه مالک و مستأجری رابطه عبد و مولا رابطه اعداد با مجذور آنها.
مفهوم تابع: تابع بیانگر چگونگی ارتباط مقدار یک کمیت(متغیر وابسته y= ) به مقدار یک کمیت دیگر( متغیر مستقل x= ) است مفهومی که خواص آن، انواع آن، نمودار آن حد و پیوستگی آن؛ مشتق و انتگرالگیری از آن و… نه تنها در ریاضیات بلکه درهمه علوم و فنون نقش مهمی ایفا میکند و در زندگی خود نیز به نمونههایی برمیخوریم که مقدار یک کمیتی( کمیت تابع) به مقدار کمیت دیگری( کمیت آزاد) وابسته است؛
مثال: متغیرهای وابسته (y) و متغیرهای مستقل(x) را در مثالهای زیر مشخص کنید:
1) افزایش طول یک فنر به وزنهای که به آن آویزان میشود بستگی دارد.
جواب: « افزایش طول فنر» = متغیر وابسته(y ) و « مقدار وزنه» = متغیر آزاد (x)
2) »هر که بامش بیش، برفش بیشتر»
جواب:« مقدار برف انباشتهشده روی پشتبام» = متغیر وابسته(y ) و« مساحت پشتبام»= متغیر آزاد
3) مقدار مکعب هر عددی به آن عدد وابسته است.
جواب: مکعب عدد«= متغیر وابسته(y ) و « خود عدد»= متغیر مستقل(x )
تذکر: با توجه به اینکه هر تابع یک رابطه است( عکس این مطلب درست نیست یعنی هر رابط ممکن است تابع نباشد.
تعریف تابع:
اگر رابطهf بصورت مجموعه زوجهای مرتب باشد آنگاه رابطةf را تابع گویندهرگاه هیچ دوزوج مرتب متمایزی در f دارای مؤلفههای اول یکسان نباشند یعنی:
دسته بندی | ریاضی |
بازدید ها | 18 |
فرمت فایل | doc |
حجم فایل | 186 کیلو بایت |
تعداد صفحات فایل | 38 |
ماتریس
مقدمه :
شاید یکی از کاربردی ترین مفاهیم و مباحث ریاضی ، مبحث مربوط به ماتریس است که از آن به عنوان ابزاری قوی در مباحث دیگر ریاضیات و بخصوص در فیزیک کوانتم و علومی چون آمار ، حسابداری و ........ استفاده می شود . امروزه ماتریس ها یکی از ابزارهای اساسی محاسبات علمی ریاضیات به حساب می روند و در واقع ، نقش امروز ماتریس ها در ریاضیات و پیشبرد آن ، مانند نقش دیروز اعداد است . ریاضیات کاربردی ، در تمام شاخه ها ، نیاز مبرم به ماتریس دارد ، به خصوص که در بیش تر موارد حل مسائل عملی به نوعی با حل دستگاه های معادلات یا نامعادلات پیوند می خورد که حل چنین دستگاه هایی با ماتریس ها ارتباط تنگاتنگ دارد . ا زاین ور ، این مبحث حتی در سطح دبیرستان نیز از اهمیت ویژه ای برخوردار است ، به طوری که هم در کتاب درسی ریاضیات سال دوم ، هم در هندسه ی تحلیلی و جبر خطی دوره ی پیش دانشگاهی و هم در کتاب های ریاضی عمومی رشته های مهندسی از آن استفاده شده است . لذا ، با مطالعه و یادگیری مفاهیم مربوط به ماتریس ها و کاربرد آن ها ، یکی از جالب ترین و در عین حال ، مفید ترین موضوعات ریاضی بررسی خواهد شد .
تعریف ماتریس : بر اساس تعریفی که اولین بار یک ریاضیدان انگلیسی به نام «کیلی» برای ماتریس ارائه داد ، «ماتریس ، آرایشی از اعداد حقیقی است که روی سطرها و ستون های منظم قرار گرفته و با دو کروشه محصور شده باشند .» هر یک از اعداد حقیقی موجود در یک ماتریس را یک درایه یا عنصر آن ماتریس می نامند .
هر یک از آرایش های زیر یک ماتریس است : (ماتریس ها را با حروف بزرگ نشان می دهیم . )
هر درایه در یک ماتریس ، در تقاطع یک سطر با یک ستون قرار دارد ، مثلاً در ماتریس A ، عدد 2 در تقاطع سطر اول با ستون دوم قرار دارد و یا در ماتریس B ، عدد در تقاطع سطر دوم و ستون دوم واقع است که در واقع ، جایگاه هر درایه در هر ماتریس با همین تقاطع ها مشخص و برای هر درایه در هر ماتریس دو اندیس در نظر گرفته می شود که اولی سطر و دومی ستون مربوط به آن درایه را معلوم می کند . برای مثال ، وقتی می نویسیم یعنی درایه ی روی سطر دوم و ستون سوم و برای هر ماتریس نیز دو اندیس در نظر گرفته می شود که اندیس اول ( از چپ ) تعداد سطرها و اندیس دوم تعداد ستون های آن ماتریس را نشان می دهد . برای مثال اگر B ماتریسی با دو سطر و سه ستون باشد ، می نویسیم و می گوییم « B ماتریسی 2 در 3 » یا «از مرتبه ی 2 در 3 » است ، و در حالت کلی اگر A ماتریسی باشد ، داریم :
دسته بندی | ریاضی |
بازدید ها | 9 |
فرمت فایل | doc |
حجم فایل | 107 کیلو بایت |
تعداد صفحات فایل | 40 |
روش های تکراری پیش فرض در مسائل گسسته خطی از منظر معکوس« بایسیان»
چکیده:
در این مقاله ما با مسائل گسسته خطی که با روشهای تکراری قابل حل می باشد از نظر آماری معکوس بایسیان روبرو خواهیم شد پس از بررسی اجمالی روش های تکراری عمده برای حل مسائل ناقص خطی و برخی نتایج آماری اولیه و روشهای آماری استراتژیهای ترسیمی را مورد تجزیه و تحلیل قرار خواهیم داد. نمونه های محاسبه شده رابط بین این دو را تشریح می کند.
کلمات کلیدی: حل های معکوس( امتحانی) فضای فرعی« کریلا» و روش معکوس« بایسیان»
پیش فرضها مسائل ناقص
(1) مقدمه
استفاده از روشهای تکراری برای حل سیستمهای خطی معادلات روشی انتخابی است هنگامی که ابعاد سیستم آنقدر بزرگ باشد که
فاکتورسازی ماتریس A را غیر عملی سازد یا هنگامی که ماتریس آن بطور صریح مجهول باشد و ما بآسانی بتوانیم حاصلضرب آن را با هر گونه بردار معلومی محاسبه کنیم. هنگامی که سیستم خطی در رابطه با گسستگی مسائل خطی ناقص سمت راست b اطلاعات و فرضیات را مورد بررسی قرار دهد، نقش مسائل متوالی در ماتریس A افزایش می یابد و بنابراین حل مسائل برای یافتن خطا در داده ها مهم و ضروری به نظر می رسد. بمنظور حفظ خطا در نشان دادن صورت b برخی از روشهای بدست آوردن مجهولات بایستی مشخص شود در زمینه روشهای معکوس بمنظور حل مجهولات بواسطه توقف کردن تکرار قبل از همگرایی در حل سیستم های خطی بهتر است به تکرار های ناقص رجوع شود. تجزیه و تحلیل کامل در ویژگی های معلوم کردن به روش CG در معادلات کامل هنگامی که می توان از معیارهای بازدارندگی مناسب استفاده کرد در بخش ] 10 [ قابل بحث می باشد.
در صورتیکهM ماتریس معکوس باشد، براساس ویژگی های طیفی MA همگرایی سریعترین برای روشهای حل تکراری ایجاد می کند. ماتریس M ماتریس شرطی سمت چپ برای سیستم خطی(1) نامیده می شود قابلیت امتحان ماتریس M نشان میدهد که سیستم های (1) و (2) راه حل یکسانی دارند انتخاب یک ماتریس شرطی مقدم M نشان می دهد که چنین ماتریسی نه تنها ویژگی های طیفی ماتریس A را تغییر می دهد بلکه بمنظور حل سیستم های خطی با مضروب ماتریس A بآسانی می توان آن را در کل بردار ضرب کرد. در حقیقت در هنگام حل سیستم 2 به روش تکرار لازم است ضرب ماتریس در بردار را در فرم مورد محاسبه قرار دهیم. سیستم خطی (1) با معادله زیر قابل جانشینی است.
(3)
ماتریس معکوس
در صورتی کهM ماتریس معکوس باشد در این مورد M ماتریس شرطی اولیه را ست نامیده می شود و از آنجائیکه هنگام حل سیستم خطی لازم است ضرب ماتریس در بردار را که بصورت نشان داده می شود محاسبه کنیم حل سیستم خطی با ضریب ماتریس A نیز ضروری به نظر می رسد یکی از شرایط برای روشهای حل تکراری در سیستم های خطی را می توان در بخش 19 مشاهده کرد زمانی که سیستم خطی از پراکندگی مسائل ناقص خطی ناشی می شود لازم و ضروری است که این مسائل را حل کرد در عوض تغییر مسیر از شتاب دهنده های همگرا به یک افزایش دهنده کیفیت در حل مسائل محاسبه شده به هیچ روش امکان پذیر نمی باشد. علاوه بر آن سمت و جهتی که معکوس ماتریس بکار می رود بسیار مهم است.در حل تکراری مسائل خطی یک شرط اولیه سمت راست مرتبط با داده های کاملاً منسجم و موجود در مورد حل در حالیکه شرایط لازم الاجرای سمت چپ داده هایی در مورد تمایز ویژگی های آماری ارائه می دهد در حالی که کاربرد این فرضیات در رابطه با روشهای تکراری در سیستم های خطی مشابه و مسائل خطی ناقص بر هم مرتبط است ساخت این پیش فرضیات مناسب کاملاً متغیر بوده و در موارد بعدی برای فهم اینکه چگونه این پیش فرضیات بر کیفیت حل مسائل اثر گذارنده مهم بنظر می رسد.
برخی انواع داده های قبلی در مورد حل ممکن است قابل تغیر به یک تغییرات مناسب در جهت حل های تکراری باشد بعنوان مثال داده هایی در مورد حد های بالایی و پائینی در حل اعداد صحیح بواسطه مراحل ترسیم سازی، پس از ترسیم روش تقریبی روش های تکراری با استفاده از روش های حل ترسیمی بعنوان یک سری حدسیات اولیه جدید آغاز می شود رجوع شود به] 3 [ فرایند ادامه می یابد تا یک معیاری برای توقف حاصل شود این امر باعث می شود روشهای مؤثر محاسباتی نسبت به مدل های استاندارد تأثیر بهتری داشته باشد.
این مقاله به صورت زیر تنظیم شده است در بخش 2 ما مختصراً برخی از تحقیقات در زمینه روشهای تکراری کریلا و را برای مسائل ناقس و گسسته خطی مورد بررسی قرار می دهیم بخس 3 یک بررسی اجمالی در مورد نتایج آماری مورد نیاز می باشد بخش 4 رابطه بین پیش فرضیات و مسائل معکوس آماری« بایسیان» را با اطلاعات آماری در زمینه حل و نقص را عنوان میکند بخش 5 چگونگی استفاده از استراتژیهای ترسیمی را باری فائق آمدن بر حدهای بالایی و پائینی در حل مسائل نشان میدهد. در بخش 6 ما دیدگاهی را مورد چگونگی انتخاب حدهای مناسب برای یک مجموعه مسائل خطی ناقص هنگامی که راه حل هایی برای حل حدها بخوبی شناخته نشده باشد و چگونگی فائق آمدن بر آن ها را با پیش فرضیات سمت راست مورد بررسی قرار می دهیم. رابطه بین پیش فرضیات سمت چپ و ویژگی های آماری در بخش 7 می آید بخش 8 نمونه های حل شده ای از عملکرد پیش فرض ها و استراتژی های ترسیمی را در بخشهای پیشین ارائه می دهد. نتایج و رئوس مطالب در بخش 9 موجود است.
دسته بندی | ریاضی |
بازدید ها | 16 |
فرمت فایل | doc |
حجم فایل | 561 کیلو بایت |
تعداد صفحات فایل | 45 |
مینیمم کردن توابع چند متغیره
مقدمه:
یک کاربرد مهم حساب دیفرانسیل، پیدا کردن مینیمم موضعی یک تابع است. مسائل مربوط به ماکزیمم کردن نیز با تئوری مینیمم کردن قابل حل هستند. زیرا ماکزیمم F در نقطه ای یافت می شود که -F مینیمم خود را اختیار می کند.
در حساب دیفرانسیل تکنیک اساسی برای مینیمم کردن، مشتق گیری از تابعی که میخواهیم آن را مینیمم کنیم و مساوی صفر قرار دادن آن است.
نقاطی که معادله حاصل را ارضا می کنند، نقاط مورد نظر هستند. این تکنیک را می توان برای توابع یک یا چند متغیره نیز استفاده کرد. برای مثال اگر یک مقدار مینیمم را بخواهیم، به نقاطی نگاه می کنیم که هر سه مشتق پاره ای برابر صفر باشند.
این روند را نمی توان در محاسبات عدی به عنوان یک هدف عمومی در نظر گرفت. زیرا نیاز به مشتقی دارد که با حل یک یا چند معادله بر حسب یک یا چند متغیر بدست می آید. این کار به همان سختی حل مسئله بصورت مستقیم است.
مسائل مقید و نامقید مینیمم سازی:
مسائل مینیمم سازی به دو شکل هستند:نامقید و مقید:
در یک مسئله ی مینیمم سازی نامقید یک تابع F از یک فضای n بعدی به خط حقیقی R تعریف شده و یک نقطه ی با این خاصیت که
جستجو می شود.
نقاط در را بصورت z, y, x و... نشان می دهیم. اگر نیاز بود که مولفه های یک نقطه را نشان دهیم می نویسیم:
در یک مسئله ی مینیمم سازی مقید، زیر مجموعه ی K در مشخص می شود . یک نقطة
جستجو می شود که برای آن:
چنین مسائلی بسیار مشکل ترند، زیرا نیاز است که نقاط در K در نظر گرفته شوند. بعضی مواقع مجموعه ی K به طریقی پیچیده تعریف می شود.
سهمی گون بیضوی به معادلهی
را در نظر بگیرید که در شکل 1-14 مشخص شده است. به وضوح مینیمم نامقید در نقطه ی
(1و1) ظاهر می شود، زیرا:
اگر
مینیمم مقید 4 است و در (0،0) اتفاق می افتد.
Matlab دارای قسمتی است برای بهینه سازی که توسط اندرو گریس طراحی شده و شامل دستورات زیادی برای بهینه سازی توابع عمومی خطی و غیر خطی است.
برای مثال ما می توانیم مسئله ی مینیمم سازی مربوط به سهمی گون بیضوی نشان داده شده در شکل 1-14 را حل نماییم.
ابتدا یک M-file به نام q1.m می نویسیم و تابع را تعریف می کنیم:
دسته بندی | ریاضی |
بازدید ها | 11 |
فرمت فایل | doc |
حجم فایل | 89 کیلو بایت |
تعداد صفحات فایل | 11 |
معادلات فرد هولم
باهت ها با جبر ماتریسی: سه معادله انتگرال زیر را در نظر بگیرید
حدود تغییرات انتگرال گیری و تعریف توابع شامل است. حدود انتگرال گیری را تا لازم نباشند ذکر نمی کنیم. قبل از اینکه جواب، این معادلات را مطرح کنیم بهتر است که تقریب هایی ساده برای آنها بدست آوریم، سپس تقریب ها را مورد بحث قرار دهیم. برای این کار می توانیم ایده ای از خواص معادلات انتگرال را بدست آوریم، هر چند عموماً این خواص را به جای اثبات فقط معین می کنیم. در اینجا فرض می کنیم که معادلات ناتکین هستند.
فرض کنید یک عدد صحیح باشد و q,p اعداد صحیح مثبت کمتر از باشند. قرار می دهیم: .
با میل به سمت بی نهایت و h به سمت صفر، به درستی انتظار داریم که تقریب بهتر و بهتر شود.
به ترتیب تقریب هایی برای معادلات انتگرال (1-2)، (2-2)و(3-2) هستند.
معادلات (4-2)،(5-2)و(6-2) را می توان به ترتیب، به صورت ماتریسی بازنویسی کرد.
دسته بندی | ریاضی |
بازدید ها | 8 |
فرمت فایل | doc |
حجم فایل | 805 کیلو بایت |
تعداد صفحات فایل | 55 |
ریاضیات و بند کفش
آیا هیچ گاه از خود پرسیده اید که چه کسی یک ریاضیدان است؟ چندین سال پیش حرفه ای برای این پرسش در ذهن من ایجاد شد و به نظرم رسید که ریاضیدان شخصی است که قدرت تشخیص فرصتهای موجود برای به کار گیری ریاضیات را دارد و این در حالی است که بقیه افراد متوجه این فرصتها نیستند. در این مورد می توان بند کفش را در نظر گرفت آقای جان هاتسون استاد علوم کامپیوتر دانشگاه کارولینای شمالی مقاله ای با عنوان
» معمای بند کفش« به رشته تحریر درآورده است. حداقل سه نوع آرایش کلی برای بستن بند کفش وجود دارد که عبارت است از نوع امریکایی(زیگراگ)، نوع اروپایی و نوع کفاشی(ایرا نی). هر چند از نظر خریدار شکل ظاهری و زمان لازم برای گره زدن دارای اهمیت است ولی برای تولید کنندگان کفش، موضوع مهمتر آن است که کدام یک از آرایشها دارای کوتاهترین طول بوده و در نتیجه کمترین هزینه را در بر خواهد داشت؟ در این مبحث به منظور یافتن طول بند فقط اندازه خطوط مستقیم مورد توجه قرار گرفته است. فزض شده است که طول مورد نیاز برای گره زدن در تمامی آرایشها یکسان است و از این رو در نظر گزفته نشده است. توصیه میشود از چشمهای کسی ه کفش را پوشید ه است به کفش بنگرید و در این راستا منظور از ردیف بالای سوراخها آنهایی است که نزدیک پا باشند.نکته دیگر اینکه در اینجا ضخامت بند (ضخامت خط) معادل صفر و سوراخها به عنوان نقطه فرض شده اند. حال اگر به دقت به مساله بنگریم، خواهیم دید که طول بند به سه پارامتر بستگی دارد که در روی شکل نیز مشخص شده اند: 1- تعداد سوراخها(n ) 2- فاصله بین سوراخهای متوالی (d ) 3- فاصله بین سوراخها ی چپ و راست در هر ردیف (g ).
بااستفاده از قضیه فیثاغورث می توان طول بندها را یافت (البته شادی تعجب کنید که قضیه چنین مرد بزرگی دارای این کاربرد باشد):
دسته بندی | ریاضی |
بازدید ها | 13 |
فرمت فایل | doc |
حجم فایل | 67 کیلو بایت |
تعداد صفحات فایل | 56 |
نسبیت
مقدمه :
معمولا سه مرحله مجزا در تحول بینیتی وجود دارد. این سه مرحله به طور شماتیک است. در ابتدا یک زیر وامه که تشکیل از یک صفحه فریتی است روی مرزدانه آشیت جوانه زنی کرده و تا زمانی که رشد آن توسط تغییر شکل پلاستیک آشیت زمینه متوقف نشده به رشد خود ادامه می دهد. در این مرحله زیر واحدهای جدید در نوک صفحه فریتی قبلی جوانه زنی کرده و رشد می کنند . مجموعه ای از چند زیر واحد را اصطلاحا یک شیف (Sheef) می گویند. سرعت متوسط طویل شدن یک شیف قاعدتا کمتر از یک زیر واحد است که علت آن وقفه های زمانی بین تکیل زیر واحدهای متوالی است . رسوبگذاری کاربید که در مرحله بعدی وقوع می یابد سرعت تحول را با حذف کربن از آشیت باقی مانده یا از فریت فوق اشباع متاثر می کند.
دمای شروع تحول
دمای شروع تشکیل نسبیت و هم چنین فریت ویرمن اشتاین که ماهیت تحول آن بسیار شبیه به نسبیت می باشد ) به ترکیب شیمیایی فولاد بیش از دمای حساس هستند (شکل a6.3(
این مساله نشان دهنده اثر انحنای محلول بر تحولات بینیتی یا فریت ویرمن اشتاتن است.
ویاگرام زمان – دما – استحاله (TTT) در فولاد ها اغلب مطابق شکل b 6.3 است . همانطور که ملاحظه می گردد این دیاگرام شامل در منحنی c شکل است که بالائی مربوط به تحولات نفوذی یا تحولات همراه با دوباره بنا شدن ساختارهای فازی (Re Consteructive) و منحنی پایینی مربوط به تحولات برشی یا همراه با جابجایی دسته جمعی انحنا (displacive) می باشند . دمای روی منحنی پایینی شکل b6.3 نشان دهنده بالاترین دمایی است که فریت ویرمن اشتاتن و نسبیت یکسان بوده و صرفا به شرایط ترمودینامیکی بستگی دارد. با توجه به تاثیر عناصر آلیاژی بر دمای شروع تحول نسبیتی روابط تجربی زیادی در فولادهای مختلف ارائه شده اند مثلا رابطه برای فولادهای مختلف با آنالیز 55/0-1/0 درصد کربن 35/0-1/0 درصد سیلسیوم 7/1-2/0 درصد منگنز 0/5-0 درصد نیکل 5/3-0 درصد کروم 0/1-0 درصد مولیون ارائه گردیده است.
جوانه زنی نسبیت
همانطور که اشاره گردید جوانه زنی نسبیت مشتمل است بر تشکیل یک زیر واحد به صورت یک صفحه فریتی در مرزدانه آشیت اولیه سرعت جوانه زنی تابعی از دما و انرژی فعالسازی تحول است و به صورت زیر بیان می گردد.
از رابطه فوق v فاکتور نوسانی انرژی فعالسازی جوانه زنی و A ثابت است .
رشد نسبیت
جابجایی فصل مشترک بین واحدهای نسبیت باآشتینت باقی مانده نیازمند جابجایی ایتمهای فاز مادر و اختیار ساختار فاز محصول است . سهولت وقوع این فرایند میزان تحرک مرز را تعیین می نماید البته توزیع اتمهای محلول و همچنین کربن حرکت فصل مشترک را محدود می نماید .بنابر این دو عامل تحرک مرز در اثر جابجایی اتمهاو نفوذ کربن و اتمهای محلول تعیین کننده سینیتک رسد نسبیت هستند . هر دو این فرایندها نیرو محرکه موجود برای تحول را مصرف می کنند.
هنگامی که بیشتر نیرو محرکه موجود جهت نفوذ اتمها مصرف می گردد تحول را کنترل شونده توسط نفوذ می گویند و اگر بالعکس نیرومحرکه جهت اتمها در سراسر فصل مشترک مصرف شود آنرا تحول کنترل شونده بالفصل مشترک می گویند . ابعاد تیغه های نسبیت در طی رشد تحت کنترل نفوذ با زمان به صورت پارا بولیک تغییر می کند . با افزایش ابعاد فاز محصول منطقه نفوذی هم گسترش می یابد و افزایش مسافت نفوذ جهت رسیدن اتمهای محلول به دورترین نقاط باعث کاهش سرعت نفوذ می شود .
ولی صفحات یا سوزنهای موجود با توجه به توزیع اتمهای محلول به وجوه با سرعتی ثابت به رشد خود ادامه می دهند.
دسته بندی | ریاضی |
بازدید ها | 6 |
فرمت فایل | doc |
حجم فایل | 9 کیلو بایت |
تعداد صفحات فایل | 13 |
تحقیق در مورد هندسه
مقدمه
هندسه هم مانند حساب، یکی از کهن ترین بخش های دانش ریاضیات است.تاریخ پیدایش آن در ژرفای سده های گذشته است.هندسه در دنیای کهن،بیشتر جنبه کاربردی داشته است و این دوران خود را، که طولانی ترین دوران تکامل آن است، در ایلام، بابل،مصر،چین و در واقع در همه سرزمین های گذرانده است و همه ملت ها در ارتباط بااندازه گیری، به ویژه اندازه گیری زمین های کشاورزی، در ساختن مفهوم های هندسی دخالت داشته اند.
مفهوم اصل،قضیه ودیدگاه اقلیدس:
«اصل» در هندسه، به حکمی گفته می شود که بدون اثبات پذیرفته شود؛ در واقع درستی آن با تجربه سده های متوالی تایید می شود.حکم هایی که به یاری اصل ها ثابت می شوند،« قضیه » نام گرفته اند. اثبات،عبارت از استدلالی است که به یاری آن و به یاری اصل ها، می توان قضیه را ثابت کرد.قضیه،ترجمه ای از واژه یونانی «ته ئورم» که به معنای «اندیشیدن» است.
اصل ها و قضیه ها را برای نخستین بار،دانشمندان یونانی وارد دانش کردند. ارشمیدس(سده سوم پیش از میلاد) در کتاب های خود،بارها از اصل وقضیه استفاده کرده است. تاسرانجام اقلیدس(سده سوم پیش از میلاد) در«مقدمات» خود در سیزده کتاب اصل هاو قضیه های هندسی را منظم کرده است.
«مقدمات اقلیدس» تنها کتابی است که در طول نزدیک دو هزار سال پس از او، هندسه را به دیگران آموخته است.حتی امروز هم، هندسه دبیرستانی بر اساس مقدمات اقلیدس است.
برخی از اصل ها را ،اقلیدس «پوستولا» (خواست)نامیده است. برای نمونه،نخستین پوسترلا در «مقدمات» اقلیدس، به این ترتیب تنظیم شده است: «دو نقطه را میتوان به وسیله خط راست به هم وصل کرد.»
به ظاهر، پوستولاهای اقلیدس،ویژه هندسه است. او اصل هایی را که عمومی ترند ودر دانش های دیگر هم به کار می روند «آکسیوم» می نامد. امروز همه اصل ها(آکسیوم ها وپوستولاها) را «آکسیوم» می نامند که در زبان فارسی، به «اصل موضوع» معروف اند.
• معمای اصل پنجم اقلیدس
در طول بیش از دو هزارسال، دانشمندان گمان می کردند که هندسه ای جز هندسه اقلیدسی وجود ندارد. براساس این تصور، ریاضیدانان تلاش می کردند پوستولاهای اقلیدس را از دیگر اصل های موضوع نتیجه بگیرند. تغییر یافته پوستولای پنجم اقلیدس به وسیله «پولی فر» چنین می گوید: از یک نقطه بیرون از یک خط راست، نمی توان دو خط راست موازی با خط راست مفروض رسم کرد.ولی همه تلاش ها برای اثبات این اصل موضوع ناکام ماند.
ریاضیدانان ایرانی از جمله فضل حاتم نیریزی وعمر خیام، در این راه کوشیدند؛ ولی نتیجه این شد که اصل موضوع دیگری را به جای اصل موضوع اقلیدس قرا دادند. خیام در کتاب خود که به این موضوع اختصاص دارد، چهارضلعی های دو قائمه متساوی الساقین را مطرح می کند. او از چهارضلعی هایی صحبت می کند که دو ضلع رو به رو با هم برابر وبر قاعده عمود باشند.بعد ابتدا ثابت می کند، دو زاویه دیگر این چهارضلعی باهم برابرند وبا جانشین کردن اصل دیگری به جای پوستولای پنجم اقلیدس،حاده یامنفرجه بدون دو زاویه دیگر را رد می کند. طرح خیام به وسیله نصیرطوسی به کشورهای اروپایی می رود. از جمله ساکری ریاضیدان ایتالیایی، با طرح همان چهارضلعی ها تلاش می کند اصل موضوع اقلیدس را ثابت کند؛ ولی به نتیجه ای نمی رسد.
دسته بندی | ریاضی |
بازدید ها | 6 |
فرمت فایل | doc |
حجم فایل | 619 کیلو بایت |
تعداد صفحات فایل | 38 |
هندسه 2
فصل اول:
1) اصولی از خط راست:
الف) یک خط شامل مجموعه ای از نقاط است که می توان گفت هر خط شامل حداقل دو نقطة متمایز است.
ب) دو خط راست متمایز حداکثر یکدیگر را در یک نقطه قطع می کنند.
ج) هر دو نقطه متمایز حداقل بر یک خط قرار دارند.
د) بین هر دو نقطه متمایز از یک خط راست می توان نقطه ای متمایز از آن دو بدست آورد.
2) اصولی از صفحه:
الف) صفحه مجموعه ای است از نقاط و هر صفحه حداقل شامل 3 نقطه است که بر یک استقامت نمی باشند.
ب) بر هر سه نقطه غیرواقع بر یک خط راست یک صفحه می گذرد.
ج) اگر هر دو نقطه از خطی، در یک صفحه باشند تمام نقاط این خط نیز در این صفحه است.
3) فضا: مجموعه ای نامتناهی شامل کلیه نقاط است.
4) تعریف: تعریف یعنی شناساندن یک چیز یا یک شیء بوسیله مشخصات لازم برای شناساندن. تعریف باید جامع و مانع باشد.
5) تعریف نشده ها: آنچه را که با درک و تصورکردن و یا از طریق مشاهده شناخته و بدون تعریف می پذیریم.
6) برهان: رسیدن از یک سلسله گزاره های درست قبلی به گزاره هایی که درستی آن را بر مبنای آنچه قبلاً پذیرفته ایم قبول می کنیم.
7) قضیه: هر گزاره ای که درستی آن نیازمند برهان است.
8) اصل: هر گزاره ای که درستی آن نیاز به برهان ندارد.
9) شکل: هر مجموعه ای از نقاط را یک شکل نامند.
10) نیم خط:مجموعه ای از نقاط یک خط را که از یک طرف محدود و از یک طرف نامحدود باشد.
با n نقطه متمایز در یک راستا n2 نیم خط داریم
11) پاره خط: جزئی از یک خط راست که از دو طرف محدود باشد. مانند پاره خطAB
دسته بندی | ریاضی |
بازدید ها | 9 |
فرمت فایل | doc |
حجم فایل | 137 کیلو بایت |
تعداد صفحات فایل | 18 |
هندسه بردارها
بردارها:
بردار: دارای بزرگی و جهت است، بردارها از قاعده ترکیب (برداری) خاصی پیروی می کنند.
لیست برداری: کمیتی است که هم بزرگی و هم جهت دارد و بدین سبب می توان آن را با یک بردار نمایش داد.
برخی کمیتهای فیزیکی، از جمله جابجایی، سرعت و شتاب کمیتهای برداری دارند.
همه کمیتهای فیزیکی جهت ندارند، مثلاً دما، انرژی، جرم و زمان جهت خاصی را در فضا نشان نمی دهند این نوع کمیتها را نرده ای گویند و محاسبه های مربوط به آن با قاعده های جبری عادی انجام می شود.
ساده ترین کمیت برداری، جابجایی یا تغییر مکان است. برداری که جابجایی را نشان می دهد، بردار جابجایی نامیده می شود.
جمع کردن بردارها به روش هندسی :
شکل1-1 روش هندسی مربوط به جمع کردن بردارهای دو بعدی a و b را نشان می دهد.
جمع برداری که به این صورت تعریف می شود دو خاصیت مهم دارد.
نخست ترتیب جمع کردن بردارها اهمیتی ندارد. جمع کردن a و b همان نتیجه جمع کردن b با a را بدست می دهد.
یعنی (قانون جابجایی) a+b=b+a
دوم، هر گاه بیش از دو بردار داشته باشیم، برای جمع کردن می توانیم آنها را به هر ترتیبی که بخواهیم گروه بندی کنیم اگر بخواهیم بردارهای aوbوc را جمع می کنیم می توانیم نخست aوb را جمع کنیم و سپس مجموع این دو را با c بدست آوریم . همچنین می توانیم نخست bوc را جمع و سپس آن مجموع را با a جمع کنیم نتیجه ای را که به دست می آوریم برای هر دو یکسان است یعنی:
( قانون شرکت پذیری)
برادار b برداری است که همان بزرگی بردار b را دارد اما جهتش مخالف است . با جمع کردن این دو بردار داریم:
بنابراین جمع کردن –b همان اثر تفریق کردن b را دارد . از این خاصیت برای تعرةیف تفاضل دو بردار استفاده می کنیم .
فرض می کنیم: پس (تفریق برداری)
یعنی برای تعیین بردار تفاضل ، بردار را با بردار جمع می کنیم.
مؤلفه های بردارها :
مؤلفه ی یک بردار تصویر یک بردار بر روی یک محور است.
مولفه های یک بردار برای به دست آوردن مولفه های (نرده ای) هر بردار و معدن ، در راستای محورهای مختصات، از انتهای بردار خط هایی بر محور های مختصات عمود می کنیم.
مؤلفه های بردار عبارت انداز :
که در آن زاویه میان محور x مثبت و بردار a است. علامت جبری یک نقطه جهت آن رادار روی محور مربوط نشان می دهد. با در دست داشتن مؤلفه های بردار ، می توان بزرگی سمتگیری آن را معین کرد:
دسته بندی | ریاضی |
بازدید ها | 14 |
فرمت فایل | doc |
حجم فایل | 70 کیلو بایت |
تعداد صفحات فایل | 15 |
طول کمان، مساحت و تابع Arcsine
-مجله ریاضیات ، مارس 1983، جلد 56، شماره 2 صفحات 110-106
-توصیف هندسی مقاله ها جبری یک محرک اصلی برای حساب دیفرانسیل وانتگرال مقدماتی ایجادمی کند.
عناوین حساب دیفرانسیل وانتگرال بوسیله هندسه تحلیلی در بسیاری از متن های مقدمه وابستگی به شروع های عکس دار در گسترش انتگرال معین و مشقق اشاره می کند.
در حالی که فاکتورهای هندسی ، بسیاری از نمادهای توابع مثلثاتی ومشتق های آنها را کنترل کننده یک راه حل تقریبا جامع برای روشهای جبری را معرفی و مطالعه توابع مثلثاتی معکوس وجود دارد این نتکه نشان می دهد چطور مفاهیم جبری در تعاریف انتگرال معین، مثلثاتی ومشتق های آنها در بحث تطابق توابع معکوس ممکن است ادامه پیدا کند. مرجع در رابطه با این مفاهیم جبری نسبت به توسعه نظریه بیضی و روش الوار(Eluer) در کشف قضیه های ضمیمه جبری را سینوسهای دایره ای هدلولی و lemniscare ایجاد خواهد شد.
حساب دیفرانسیل وانتگرال نمونه در مقابل arcsine بعنوان طول کمان با در نظر گرفتن ]1[ و ] 3[ بعنوان نمونه هایمان، یادآوری می کنیم که در کتاب جدید درسی استاندارد، بعد از آنکه انتگرال معین تعریف شده است . کاربردهایی شامل مساحت بین دو منحنی وفرمول طول کمان می شود از آنجائیکه تکنیک های انتگرال گیری کمی در دسترس می باشد. مشکلات طول کمان به کمان های باریک y=f(x) تا حدی که انتگرال بطور خاصی ساده باشد وگاهگاهی توجیه یک نویسنده برای نبود کاربردهای مناسب پیشنهادی شود.(ببنید ]3[ صفحه 429)
بعد از مقوله توابع مثلثاتی مروری از اندازه گیری رادیان بطوریکه طول کمان از نقطه (0و1) روی دایره واحد اندازه گیری می شود. Cosine , sine یک عدد حقیقی بعنوان مختصات sineو cos یک عدد حقیقی بعنوان مختصات نقطه (x,y) روی دایره واحد رادیان های از (0و1) (شکل 1 را ببنید) سپس خصوصیات sine و cos از تشابهات دایره و دیگر توابع مثلثاتی که در اصطلاح های cosin ,sine تعریف می شود ناشی می شود. مشتق های cosine ,sine بعنوان نتایج 1(sin )/ = ایجادمی شود. این حد از طریق برابر گرفتن طول کمان در امتداد لبه دایره واحد با مساحت بخشی که بوسیله کمان ( در شکل 2و 2= مساحت Aos) وسپس قراردادن این مساحت مابین دو ناحیه مثلث شکل برقرار می گردد.
بعد از مطالعه حساب دیفرانسیل وانتگرال توابع مثلثاتی (f(x)) مطابق توابع معکوس ( از طریق معکوس گرافهای که می شود
دسته بندی | ریاضی |
بازدید ها | 5 |
فرمت فایل | doc |
حجم فایل | 8 کیلو بایت |
تعداد صفحات فایل | 9 |
مشاهیر ریاضی
فهرست:
سخنی درباره عمرخیام
سخنی درباره خواجه نصیرالدین طوسی
گذری بر زندگی ابوالوفای بوزجانی
گذری برزندگی ابوریحان بیرونی
گذری برزندگی اوریست گالوا
سخنی درباره ابوالحسن عبدالرحمان صوفی رازی
سخنی درباره فیثاغورس
دسته بندی | ریاضی |
بازدید ها | 6 |
فرمت فایل | doc |
حجم فایل | 27 کیلو بایت |
تعداد صفحات فایل | 29 |
نشانه های یک نقطه عطف در تاریخ ریاضی و وظایف ما
سال جهانی ریاضیات بود و مایل بودم که مثل بسیاری از عاشقان ریاضی راجع به چیستی ریاضی چیزی تهیه کنم. این کار عملی شد اما از همان موقع باورگونه ای در ذهنم ایجاد شد که تا مدتها جرأت بیان صریح آن را حتی برای خودم نداشتم، چرا که با مسیری که خود در آن قدم گذاشته ام، تناقص داشت. این فکر همواره مرا آزار داده است. تصمیم گرفته بودم که روی این فکر کار جدی انجام داده و آن را در کنفرانس ریاضی در اهواز مطرح کنم ولی میسر نشد. بنابراین بنا را بر این گذاشتم که در تابستان امسال روی این مطلب مطالعات جدی انجام دهم و ثمره آن را در سی و ششمسن کنفرانس ریاضی در یزد مطرح کنم. چون کار اصلی را به تعطیلات تابستان موکول کرده بودم، مقدور نبود که خلاصه مقاله و خود مقاله را به موقع به کنفرانس ارسال کنم. بعلاوه عنوان اولیه مقاله (شرایط کنونی و وظایف انجمن ریاضی ایران) موجب سوء تعبیر نماینده انجمن شد و نظرشان این بود که مطلب بایستی در میزگرد مطرح شود تا بتوان به آن پاسخ داد، در حالی که مقاله عمدتاً در جهت تقویت انجمن است، مضافا این که میزگرد جای ارائه مقاله نیست. به هر حال این تصمیم مرا آزرده خاطر کرد و به دلیل تردید در انجام کار، مطالعاتم دچار اختلال شد. اما در هر صورت تصمیم گرفتم که این ایده را هر چند به صورت ناقص و فشرده و به شکل آزاد، در کنفرانس ارائه کنم.
حقیقتی آشکار است که هر پدیده ای، تاریخی دارد و برای این که تصمیمی برای حال و آینده آن پدیده بگیریم بایستی تاریخ گذشته اش را بدانیم. اگر بخواهیم به زبان ریاضی تشبیه کنیم، مسیر حرکت یک پدیده مثل یک منحنی همواری است که جهت حرکت آن در هر لحظه، به مسیری که تا آن لحظه طی گرده است بستگی دارد و اگر منحنی را یک منحنی هدفدار تصور کنیم (که در مسائل اجتماعی این چنین است) مسیر گذشته و هدف نهایی جهت گیری بعدی را مشخص خواهد کرد. اگر با توجه به مسیر گذشته جهت منحنی در راستای هدف نباشد، آن نقطه، نقطه عطف خواهد بود. در بخش اول این نوشتار قصد این است که نشان دهیم در یک نقطه عطف از تاریخ ریاضیات ایستاده ایم.
این ادعا که «ما در یک نقطه عطف از تاریخ ریاضیات قرار داریم»، یک ادعای جسارت آمیزی است و نیاز به مطالعه وسیع درباره تاریخ ریاضیات و وضعیت ریاضی در دنیای امروز بویژه اروپا که محور تحولات در این رمینه است، دارد. قسمت اول ،یعنی تاریخ ریاضیات، با توجه به منابع قابل قبول تا حدی انجام شدنی است، اما قسمت دوم احتیاج به زمان بیشتری دارد و از این جهت کار خود را ناقص می دانم.
نگاهی گذرا به تاریخ ریاضی: مطمئنا تاریخ ریاضی همزمان با تاریخ اندیشه انسانی است. لذا نمی توان تاریخ دقیقی برای آغاز آن متصور شد. اسناد تاریخی نشان می دهند که شرق از قبیل چین, هند, ایران, بابل و مصر به تبع تمدنهای اولیه در آن، پیشتر از غرب صاحب علوم و از جمله ریاضیات نسبتا پیشرفته ای بودند. مقدمه «پاپیروس رایند» (1650 ق م ) که یکی از قدیمترین اسناد تاریخ ریاضی است، با توجه به کندی تحولات در عهد باستان، نشان می دهد که در اوائل هزاره دوم قبل از میلاد تمدنهای شرق دارای ریاضیاتی پیشرفته بوده اند. در این سند چنین آمده است :
«به جرئت می توان گفت که بارزترین مشخصه شعور انسان که نشان دهنده درجه تمدن هر ملت است همان قدرت استدلال کردن است، و به طور کلی این قدرت به بهترین وجهی می تواند در مهارت های ریاضی افراد آن ملت به نمایش گذاشته شود»
این سند همچنین نشان می دهد که برخلاف نظر برخی تاریخ نویسان، ریاضیات قبل از تمدن یونان باستان عمدتاً تجربی و شهودی نبوده، و به نحو قابل قبولی با استدلال همراه بوده است.
در اثر ارتباطاتی که یونیان با امپراطوری ایران، بابل و مصر داشتند و به ویژه پس از کشورگشاییهای اسکندر، یونانیان تقریبا بر همه علوم زمان خود احاطه پیدا کردند و تقریبا در همه زمینه ها و از جمله ریاضیات آثاری مدون را بوجود آوردند که تا قرنها بر جهان اندیشه حکومت می کردند. به نظر می رسد که تمایل به منطق و استدلال در قرون قبل از میلاد در یونان به اوج خود رسید. به روایت تاریخ نویسان ریاضی، اولین تلاش خوب برای استدلال مسایل ریاضی توسط تالس در سده ششم قبل از میلاد و پس از آن توسط شاگردش فیثاغورس و بعد از آن در قرون سوم ق.م. توسط اقلیدس در کتاب اصول اقلیدس به صورت مدون درآمد. کتاب اصول اقلیدس گرچه شامل مقالاتی در باره اعداد است اما بیشتر مسایل مربوط به اعداد از زاویه هندسی مورد توجه قرار گرفته اند. مشابه کار اقلیدس را «نیکوماخوس» (اواخر قرن اول بعد از میلاد) در زمینه حساب انجام داد.
رسالات منطق «ارسطو» (قرن چهارم ق.م) که بعدها به «ارغنون» مشهور شد، و اثری است ریاضی- فلسفی، نیز از جمله آثاری است که بیش از هزار سال بر جهان اندیشه، از جمله ریاضی، تاثیرات عمیق گذاشت. کارهای «ارشمیدس» (سده سوم قبل از میلاد، برخی او را یکی از بزرگترین ریاضیدانان همه اعصار نامیده اند ) همواره الهام بخش ریاضیات کاربردی بوده است و تا قرن نوزدهم نفوذ عمیقی در ریاضیدانان به ویژه در زمینه آنالیز داشته است .
طی قرون بعد از میلاد به دلیل جنگ های داخلی، تسلط امپراطوری روم بر یونان، سوزاندن کتابخانه ها از جمله کتابخانه بزرگ اسکندریه و مهمتر از همه افتادن علوم در زندان خرافی کلیسا، به تدریج و به خصوص پس از تسلط اسلام بر تمدنهای بزرگ آن زمان در قرن هفتم، رسالت حفظ و انتشار علوم بر عهده ممالک اسلامی افتاد. به روایت برخی کتابهای تاریخی اولین کسی که به ترجمه آثار یونانی دست زد «ابن مقفع» دانشمند ایرانی قرن دوم هجری ( قرن نهم میلادی ) بود. وی اولین بار فن منطق را به عربی ترجمه کرد و مسلمانان را به این دانش مسلح کرد. پس از آن جریانی شکل گرفت که در تاریخ به نهضت ترجمه معروف است. در این جا نقش یک انجمن پنهانی به اسم «اخوان الصفا» که در قرن چهارم هجری شکل گرفت بسیار بارز است. نتیجه کار این انجمن که متشکل از علماء و دانشمندان اسلامی بود رساله هایی است که مشتمل بر 51 مقاله در زمینه های مختلف علوم طبیعی ، ریاضی، الهی و مسائل عقلی و غیره می باشد. از میان دانشمندانی که تاثیرات زیادی را روی نسل های بعدی در زمینه ریاضی گذاشتند می توان از خوارزمی، ماهانی، ابن قروه، کرجی، بوزجانی، خیام، ابن عزرا، کاشانی و خواجه نصیرالدین طوسی نام برد.
البته در این دوره که به دوره تاریک اندیشی غرب مشهور است و تا حدود سده چهارده میلادی ادامه داشته است، در امپراطوری روم شرقی (بیزانس) که به طور طبیعی بیشتر تحت تاثیر فرهنگ یونانی بود، علوم و از جمله ریاضیات به حرکت خود، به کندی، ادامه داد. در این میان می توان از «بوئتیوس» (ح 510 م) نام برد که معلومات ریاضی دانانی چون «اقلیدس»، «نیکوماخوس» و «ثاون» را در کتابی به نام دو مقاله در باب اصول حساب گرداوری کرد که در همه مدارس قرون وسطی تدریس می شد. برجسته ترین ریاضیدان قرون وسطی در غرب، «فیبوناتچی» (1202 م) بود که تا حدود زیادی تحت تاثیر کتاب «جبر و مقابله» اثر مهم ریاضیدان بزرگ ایرانی (قرن نهم میلادی )، یعنی «خوارزمی»، بوده است.
در کتاب «صورتبندی مدرنیته و پست مدرنیته»، قرون پس از دوره تاریک اندیشی غرب، به چهار دوره به صورت زیر تقسیم شده است:
1- دوره رنسانس یا نوزایی، از قرن چهاردهم؛
2- جنبش اصلاح دینی، در قرن شانزدهم؛
3- عصر روشنگری، از اواخر قرن هفدهم تا اوایل قرن هیجدهم؛
4- انقلاب صنعتی، از نیمه دوم قرن هیجدهم تا نیمه قرن نوزدهم؛
به نظر می رسد این تقسیم بندی در مورد تاریخ تحول ریاضیات در غرب نیز، با مختصر تفاوتی، صدق می کند.
جرقه های دوره نوزایی در ایتالیا زده شد. در این دوره در واقع علوم عهد یونان باستان و تمدن اسلامی ترجمه و بازیافت شد. شاید بتوان گفت این کار در زمینه ریاضیات در قرن سیزدهم با کارهای فبیوناتچی شروع شد. یه این ترتیب، دوره نوزایی در ریاضیات از قرن سیزدهم شروع شده است که با توجه به ماهیت ریاضی تا حدی طبیعی است. این نکته از این جهت تذکر داده شد تا توجه کنیم که تحولات در علوم گرچه به مقدار زیاد به تحولات اجتماعی وابسته است، اما بر آن منطبق نیست و گاه خود می تواند زمینه ساز تحول اجتماعی باشد.
در دوره اول تحول ریاضی در غرب که می توان گفت از قرن سیزدهم میلادی تا نیمه قرن شانزدهم ادامه دارد، اگر چه ریاضیات پیشرفت زیادی کرد اما خلاقیت و نوآوری چندانی در آن صورت نگرفت.
از نیمه دوم قرن شانزدهم تحت تأثیر گشایشی که از طریق اصلاح دینی و اجتماعی ( با پرچمداری مصلحینی چون «مارتین لوتر»، «توماس مونتسر»، «هولدریخ تسوینگلی»، «جان کالون» و دیگران ) در غرب صورت گرفت، شاهد کارهای خلاقانه در ریاضیات هستیم. می توان گفت که این جریان از «نپر» و ابداع لگاریتم شروع شد و با توجه به نیاز آن زمان به کارهای محاسباتی سنگین به شدت مورد اقبال قرار گرفت. سده های هفدهم و هیجدهم شاهد ریاضیدانان بزرگی با کارهای بزرگ در زمینه های مختلف است. «گالیله» و «کپلر» در زمینه مکانیک آسمان، «پاسکال» در زمینه هندسه تصویری و پایه گذاری نظریه احتمال (به همراه ریاضیدان بزرگ فرانسوی، یعنی «فرما» )، «دکارت» در زمینه ابداع هندسه تحلیلی ( ظاهراً «فرما» نیز همزمان با او به هندسه تحلیلی رسیده بود)، «فرما» در زمینه های مختلف ریاضی و به ویژه در زمینه نظریه اعداد و ایجاد زمینه برای پیشرفت جبر و آنالیز و بالاخره «کاوالیری»، «جان والیس» و «باروی» در بسترسازی مناسب برای کارهای اساسی که بعداً در قرن هیجدهم توسط «نیوتن» و «لایب نیتس» صورت گرفت. به این نامها بایستی نام ریاضی دان بزرگ هلندی قرن هفدهم یعنی «کریستین هویگنس» را هم اضافه کنیم که کارهایش باعث پیشرفتهای محسوسی در علم نجوم و احتمالات و اختراعات صنعتی از جمله اختراع ساعت پاندولی شد.
اوایل قرن هیجدهم نقطه عطفی در تاریخ ریاضیات است. در اوایل این قرن نیوتن و لایب نیتس به طور همزمان و با استفاده از کارهای کسانی چون کاوالیری، جان والیس و باروی که پیش از این انجام شده بود، حساب دیفرانسیل و انتگرال را ابداع کردند. در نیمه اول این قرن شاهد ریاضیدانان بزرگ دیگری نظیر برادران برنولی ( سه برادر ریاضیدان که در حل مسایل ریاضی خستگی ناپذیر بودند )، «تیلر»، «مکلورن» و دیگران هستیم.
متعاقب پیشرفتهای ریاضی و به تبع آن سایر علوم مرتبط با ریاضی و با توجه به نیاز زمان، اختراعاتی در زمینه های مختلف شروع شد و نطفه های انقلاب صنعتی در غرب در نیمه دوم قرن هیجدهم شکل گرفت. این انقلاب صنغتی به دنبال خود تغییراتی در دیدگاههای فلسفی و اجتماعی غرب گذاشت. اگر چه به روایت تاریخ، انقلاب صنعتی از انگلیس شروع شده بود ولی در فرانسه با انقلاب اجتماعی همراه شد و توانست تأثیرات شگرفی را در بینش جهان غرب بگذارد. ریاضیدانان این دوره تحت تأثیر همین بینش توانستند تابوهای ریاضی را در همه زمینه ها بشکنند. ابتدا به دنبال ابهاماتی که در طرح «بینهایت کوچکها» از طرف نیوتن و لایب نیتس در بحث حساب دیفرانسیل و انتگرال پیش آمده بود، مباحثات و مجادلات زیادی در این مورد صورت گرفت. در اثر تلاش ریاضیدانانی چون «اویلر»، «دالامبر»، «بولتسانو»، «وایراشتراوس»، «لاگرانژ»، «ریمان» و به خصوص «کوشی» برای اجتناب از این شبهات، از دل هندسه، آنالیز سر برآورد و به اوج خود رسید. از سوی دیگر نیز با تلاش ریاضیدانی چون «واندرموند»، «لاگرانژ»، «گاوس»، «آبل»، «گالوا»، «همیلتن» و دیگران از دل حساب و نظریه اعداد شاخه های مختلف جبر شکل گرفت. در این میان کارهای گاوس، آبل و به ویژه گالوا بسیار بدیع بود و کار همیلتن به جهت معرفی حلقه های تعویض ناپذیر، به دلیل ساختار شکنی، بسیار مؤثر بود.
جریان انقلابی دیگری که در این زمان شکل گرفت، شکستن تابوی هندسه اقلیدسی بود. به نقل از اسناد تاریخی اولین کسی که با طرد اصل پنجم اقلیدس به هندسه نااقلیدسی نزدیک شد «گاوس» ریاضیدان بزرگ آلمانی بود که بهر دلیل آن را انتشار نداد. کمی بعد هندسه نااقلیدسی به صورت مستقل توسط «یوهان بایایی» (1802-1860) ریاضی دان مجاری و «لباچفسکی» (1793- 1856) ریاضی دان روسی اعلام وجود کرد. چندی بعد «ریمان» با جرح و تعدیل دیگری در اصل پنجم اقلیدس، هندسه دیگری را که به هندسه بیضوی موسوم است، معرفی کرد.
دسته بندی | ریاضی |
بازدید ها | 8 |
فرمت فایل | doc |
حجم فایل | 9 کیلو بایت |
تعداد صفحات فایل | 10 |
مقایسه اصالت ریاضیات فیثاغوریان و اصالت ریاضیات در علوم جدید
افلاطون در رساله تیمائوس به نوصیف جهان طبیعی و فیزیکی می پردازد . در توصیفات افلاطون ، آنچه چشمگیر است (وساید متاثر از فیثاغوریان ) میل به ریاضیاتی کردن همه چیز است ، به علاوه ارسطو می گوید : افلاطون قائل به این بود که :
- صور ، اعدادند
- اشیاء به سبب بهرمندی از اعدادموجودند
- اعدادمرکبند از واحد و « بزرگ و کوچک » و یا « دوی نامعین » ( به جای محدود و نامحدود فیثاغوری )
- ریاضیات وضع واسطه ای میان « صور » و اشیاء دارند .
همچنین او قائل بود که حرکات پیچ پیچ اجرام آسمانی با قانون ریاضی مطابق است و نظم در اجسام طبیعی ، قابل بیان به نحو ریاضی اند . هر چند گرایش تان و تمام به ریاضی کردن همه چیز را امری ناموفق ، از سوی افلاطون دانسته اند . لکن آنچه در این کوشش برای ما ، مهم است ، این است که آیا وی با عقلانی کردن واقعیت و بخصوص طبیعت محسوس ، از طریق ریاضیاتی کردن آن ، به سوی نوعی ماشین گرایی قدم برنمیدارد ؟ عجیب می نماید که کسی که در باره عروج به زیبایی مطلقش تحت الهام از ارس در رساله میهمانی سخن می گوید ، چنین راوو را قائل شود . آیا باید بر آن شد که در تمام رساله های دیگر ، سقراط حقیقتاً به عنوان سقراط سخن نگفته است و اکنون در تیمائوس ، افلاطون ، آرای خود را بیان داشته است ؟
آیا انتساب صور به اعداد آنها را از جایگاه رفیعشان به سوی یک دستگاه ماشینی تنزل نمی دهند ؟
هر چند به نظر می رسد از سویی با ریاضیاتی شدن جهان طبیعی و جهان مثل و تبدیل آن به جهان قوانین معقول ، افلاطون به سوی ماشینی کردن جهان قوانین معقول ، افلاطون به سوی ماشینی کردن جهان پیش می رود و از سوی دیگر و در مقابل این رای گفته شده است که از قضا زیاضیاتی کردن طبیعت ، اعتلای آن است با عروج به زیبایی مطلق سازگار نیست ،از فیثاغوریان و گرایش همزمان آنان به ریاضیاتی کردن همه چیز ودر عین حال عرفان مداری آنان سخن به میان آمده است.
از سوی دیگر می دانیم که اشکال اعداد و اسرار مربوط بدانها نزد حکما و عرفای اسلامی جایگاه ویژه داشته است و محاسبات ، مربوط به جداول خاص علوم غریبه نیز مثال دیگر از این امر می تواند باشد.
آیا در این گونه عقاید و آرا نیز می توان سوال پیشین را پرسید؟ آیا اینکه اعداد ، «اصل اشیا» و موجودات ، پنداشته شوند ، می تواند ترس از ماشین شدن طبیعت را در دیدگاه قائلان به قول مذکور برای ما ایجاد نماید؟
پاسخ چنین اصالت ریاضاتی با اصالت ریاضیات علوم جدید (و به عنوان مثال بسیار ناب آن ، اصالت ریاضیات دکارت) چیست؟
دکارت نیز قائل به اصالت ریاضی بود و می خواست که عالن و آدم را با روابط ریاضی بسنجد و توصیف کند. او در پی تحقق یک «ریاضیات عمومی» بود که شاید بشود تمام معرفت رابا آن توصیف کرد. اوج هنر دکارت در تلاش برای تبیین ریاضیاتی از جهان را باید در هنرسه تحلیلی او جست و جو کرد. هندسه تحلیلی ، ابزاری است که ما توانایی می یابیم تا برای جهان جسمانی پیرامون خود ، معادله بنویسیم. دکارت مانند فیثاغورث ، هندسه را واسطه ارتباط جهان با اعداد ، قرار می دهد. او در دستگاه مختصات هندسی اش ، اعداد را با نقطه هایی متساویالفاصله روی محورهای ممتد ، متناظر می کند و جهان را درون این دستگاه قرار می دهد و لاز طریق تناظری مه برقرار می کند برای هر نقطه عالم جسمانی ، یک زوج ترتیبی از اعداد را در نظر می گیرد.
به این ترتیب ، مختصات یکه ای برای هر نقطه پیدا می شود. وقتی این اختراع دکارت را در کنار رای فلسفی اش قرار می دهیم ، در بیابیم که در نظر وی از آنجا که جسم بودن ، همان ممتد بودن است ، تمام جهان جسمانی ، قابل تحلیل به وسیله معادلات عددی خواهد بود. ثنویت دکارتی موجب آن می شود که وی در استفاده از این روش تحلیل جهان مادی کاملاً فارغالبال باشد و حتی در استفاده از آن در توصیف بدن انسان و حرکات اجزای آن نیز تردید به خود راه ندهد.
چنانکه قصد کرده بود ، حرکت قلب را با مبالات گرمایی در آن توضیح دهد.
در اینجا با تصویری از ماشینی کردن تام جهان روبروییم و یقیناً این از توصیف ریاضیاتی جهان به وسیله دکارت ناشی شده است. همین روند و ادامه تلاشهااست (کما اینکه قبل از دکارت در گالیلله و کپرنیک و ... این روحیه حکم است) که منجر به فیزیک نیوتونی و اکنون فیزیک جدید شده است. اما تفاوت در کجاست؟ چرا ب نظر می رسد ، نزد فیثاغوریان ، ریاضیات نوعی آمیزش با عرفان دارد و طبیعت را بالا می برد و نزد دکارت گرایش به ریاضیات نوعی آمیزش با عرفان دارد و طبیعت را بالا می برد و نزد دکارت نگارش به ریاضیات جهان را ناسوتی می کند؟ و چرا در افلاطون در هر دو وجه دیده می شود
دسته بندی | ریاضی |
بازدید ها | 6 |
فرمت فایل | doc |
حجم فایل | 123 کیلو بایت |
تعداد صفحات فایل | 14 |
ریاضیات بابلی و مصری
شرق باستان
ریاضیات اولیه برای توسعه خود نیازمند یک پایه عملی که چنین پایه ای با پیدا شدن اشکال پیشرفته تر بوجود آمد. در امتداد برخی از رودخانه های بزرگ آسیا و آفریقا مانند نیل در آفریقا و دجله و فرات و یانگ سه و گنگ در نواحی مختلف آسیا اشکال جدیدی بوجود آمد.
در امتداد برخی از رودخانه های بزرگ افریقا و آسیا یعنی نیل در افریقا دجله و فرات در آسیای غربی سند و پس از آان گنگ در آسیای جنوبی میانه و هوانگ هو و پس از آن یانگ تسه در آسیای شرقی بود که اشکال جدید که زمینهای واقع در امتداد این رودخانه ها به نواحی کشاورزی ثروتمندی تبدیل شوند.
با خشک کردن باتلاق و کنترل سیلاب و آبیاری این امکان وجود داشت که زمین هایی که در امتداد اینها قرار گرفته ا ند تبدیل به یک کشاورزی ثروتمند شوند.
ریاضیات اولیه در نواحی معینی از شرق باستان برای خدمت به کشاورزی و مهندسی بوجود آمده باشد یک تقویم قابل استفاده ایجاد دستگاههای اوزان و مقادیر برای استفاده در برداشت محصول ، انبارکردن و تقسیم غذا و غیره ... در تعیین قدمت اکتشافی دو مشکل وجود داشت:
1) در ماهیت ایستاپی ساخت اچتماعی و انزوای طولانی برخی از نواحی و 2) خبر موادی که کشفیات بر روی آنها ثبت می شد.
در قدیم بابلیان کشفیات خود را به روی سفالهای بادوام ثبت می کردند و مصریها بر روی سنگ و پاپیروس که از همه بادوام تر بود. در این میان هندی ها و چینی ها یافته های خود را روی خاشاک و برگ درختان ثبت می کردند که ازدوام بسیار پائینی برخوردار بود حال به مطالعه مطالب کشف شده در بابل و مصر می پردازیم.
بابل:
منابع
باستان شناسانی که در بین النهرین کار می کند از قبل از اواسط قرن نوزدمم تا کنون حدود نیم میلیون لوح سفالی منقوش از زیر خاک در آورده اند. بیشتر از 50 هزار لوح تنها در شهر باستانی نیپور به دست آمده.
مجموعه های کثیری از این لوح ها در موزه های پاریس ، برلین و لندن و نیز در دانشگاههای ییل کلمبیا و پلسیلوانیا موجودند. اندازه این لوحها متفاوت است و بین آنها لوحهایی به شکل مربع به مساحت چند اینچ و نیز لوحهایی به اندازه یک کتاب معمولی به چشم می خورد.
گاهی نوشته روی این لوح ها تنها در یک طرف لوح و یا در هر دو طرف آن است. از این نیم میلیون لوح 300 تای آنها صرفاً ریاضی شناسایی شده اند که شامل جداول و سیاهه های از مسائل ریاضی هستند ما دانش خود را از ریاضیات بابلی مدیون همین لوحها هستیم. تا پیش از سال 1800 قبل از میلاد کوشی برای کشف رمز خط میخی نمی شد در این سال عده ای مسافر اروپایی متوجه کتیبه های منقش در عمل 300 پایی در منطقه بیستون در شمال غربی لیوان کنونی کشف کردند.
معمای کتیبه های سرانجام توسط سرهنری کرسویک رالینسون (1895 – 1810) دیپلمات آشورشناس کشف شد که او کلیدی را که باستان شناس و زبان شناس آلمانی به نام جرج گئورگ فرید ریش ( 1853 – 1775) پیشنهاد کرده بود تکمیل کرد.
با بوجود آمدن توانایی لازم برای خواندن متون میخی لوحهای بابلی بدست آمده معلوم شد که این لوحها ظاهراً به کلیه مراحل و علایق زندگی آن اعصار مربوط است برخی از متون ریاضی موجود مربوط به دوره نهایی سومری در سال 21000 ق م است.
دومین گروه که گروه بزرگی هم است مربوط به سلسله بابلی اول ( یعنی دوره شاه حمورایی) تا حدود سال 1600 ق.م. می باشد .
سومین گروه مربوط به سالهای 6000 ق.م تا 300 ب.م می رسد. که مربوط به دورهای امپراتوری بابلی جدید ( بخت النصر) و دوره های بعدی پارسی و سکوی می باشد چون که تغییر این لوح هنوز در دست اقدام است پس بعید نیست به نتایج چشمگیرتری در آینده برسیم.
ریاضیات بازرگانی و ارضی :
حتی قدیمیترین لوحها نشانی از مهارت در محاسبه در سطح عالی داشته و وجود دستگاه موضعی شصتگانی را طی مدت زمانی طولانی آشکار می کند. متون متعددی از این دوره اولیه به واگذاری و محاسباتیکه بر پایه این معاملات می پردازد در دست است.
این لوحها نشان می دهند که سومریهای باستان با کلیه انواع قراردادها رسید ، سفته ضمانت و رهن مقابله سروکار داشته اند و نیز اسناد شرکتهای بازرگانی و لوحهایی که با دستگاه های اوزان و مقادیر سروکار دارند بدست آمده اند.
در این 300 لوح ریاضی که بدست آمده حدود 200 تای آنها جداول هستند. این لوحهای جدولی شامل جدولهای ضرب، عکسها، مربعات و مکعبات و حتی جدولهای توان نیز هستند. به نظر می رسد که تقویم در بابل به اعصار قدیمیترین مربوط می شود.
هندسه:
هندسه بابلی با پیوند نزدیکی با مسامی عملی دارد. بابلی های 2000 تا 1600 ق.م با قواعد کلی:
1) محاسبه مساحت مستطیل
2) مساحت مثلثهای قائم الزاویه و متساوی الساقین
3) ذوزنقه قائم الزاویه
4) حجم مکعب مستطیل و کلی تر از آن
5) حجم منشور قائمی که قاعده آن ذوزنقه خاصی است آشنا بوده اند آنها محیط دایره را به صورت سه برابر قطر و مساحت را یک دوازدهم در مجذور محیط بدست می آورده اند که با فرض ns3 درست است.
6) آنها حجم استوانه مستدیر قائم را پیدا کردن حاصلضرب قاعده در ارتفاع بدست می آورند.
7) اما حجم مخروط ناقص یا هر ناقص مربع القاعده را به غلط به صورت حاصلضرب ارتفاع در سقف مجموعه قاعده ها محاسبه می کردند. و اینکه می دانند که اضلاع متناظر در دو مثلث قائم الزاویه متشابه متناسبند و اینکه عمود مثلث متساوی الساقین قاعده را نصف می کند و همچنین محاط در یک نیم دایره قائمه است. قضیه فیثاغورث را هم بلد بودند و به جای در مسائل فرض می کردند.
مسائل متعددی راجع به خط قاطع موازی با یک ضلع مثلث قائم الزاویه وجود دارد که منجر به حل معادلات درجه دوم می شوند.
و نیز بعضی از مسائل منتهی به دستگاه معادلات می شود در یک لوح یک مورد دستگاه ده معادله ده مجهول به چشم می خورد. در یک لوح دیگر که مربوط به سال 1600 ق.م است و در دانشگاه بیل نگهداری می شود که معادله درجه سوم کلی در بحث هرمهای ناقص وجود دارد که نتیجه حذف Z از دستگاه معادلات از نوع زیر است.
تقسیم بر محیط دایره به 360 جز مساوی را بدون تولید به بابلیهای عهد باستان مدیونیم X در دوره های آغازین سومری واحد بزرگی برای اندازه گیری فاصله که توی میل بابلی وجود داشت که تقریباً معادل 7 مایل امروزی است.
و چون میل بابلی برای اندازه گیری فاصله های طولانی بود به صورت واحد زمان یعنی زمانی برای پیمودن یک میل بابلی لازم است در می آمده که بعدها برای اندازه گیری فواصل زمان مورد پذیرش قرار گرفت.
دسته بندی | ریاضی |
بازدید ها | 7 |
فرمت فایل | doc |
حجم فایل | 31 کیلو بایت |
تعداد صفحات فایل | 21 |
شبکه های احتمالی، روش مسیر بحرانی و نمودار گانت
نمودار گانت
قبل ار تلاش جهت استفاده از این ابزار (Pert، CPM و Gantt) اطاعات پروژه باید از طریق معینی جمع آوری شده باشند. لذا لازم است یک توضیح پایه ای و اساسی در مورد قدم های ارتباطی ابتدایی کار داده شود.
فرایند طراحی یک پروژه شامل مراحل زیر است:
1-مشخص کردن تاریخ روش و شیوه های اجرای پروژه و طول عمر استفاده از پروژه.
2-مشخص کردن حوزه و میزان وسعت پروژه در دوره و مرحلة انتخاب شدة روش اجرای پروژه و طول عمر پروژه
3-مشخص کردن با انتخاب روش هایی که جهت مرور پروژه مورد استفاده قرار می گیرند.
4-مشخص کردن و از پیش تعیین کردن نقاط عطف یا تاریخ های بحرانی پروژه که باید به آنها پرداخت و رسیدگی کرد.
5-لیست کردن فعالیتها، با دورة پروژه، در رابطه با اینکه هرکدام از آنها باید سر موقع به پایان رسند.
6-برآورده کردن تعداد پرسنل لازم برای به پایان رساندن هر فعالیت
7-برآورد کردن پرسنل آماده به کار جهت به پایان رسانیدن هر فعالیت
8-مشخص کردن سطح مهارت مورد نیاز جهت تشکیل دادن هر فعالیت.
9-مشخص کردن وابستگی ها و پیش نیازی های هر پروژه.
-کدام فعالیت ها می توانند بطور موازی و هم زمان انجام شوند؟
-شروع کدام فعالیتها مستلزم تکمیل فعالیتهای دیگر است:
10-نقاط کنترلی و نقاط بازدید و مورد مرور پروژه
11-تشکیل دادن برآورد هزینة اجرای پروژه و تحلیل هزینه – منافع.
توسعة طرح یک پروژه مستلزم داشتن دقت بالا و درک جزئیات همة فعالیتهایی است که شامل می شودو مقدار زمانی که برای مدت زمان طول انجام هر فعالیت تخمین زده است، وابستگی های میان این فعالیتها، و توالی زمانی که این فعالیتها باید به اجرا درایند به علاوه، آماده بودن منابع باید مشخص گردد تا هر فعالیت با مجموعه فعالیتها جهت اختصاص به کار گرفته شود.
یک روش مورد استفاده برای توسعه لیست فعالیتها، خلق کردن چیزی است که به تجزیة ساختار کار معروف است.
یک تعریف:
تفکیک ساختار (WBS): یک انحلال و متلاشی کردن سلسله مراتب و یا تجزیة یک پروژه یا فعالیت اصلی به مراحل متوالی است که در آن هر مرحله یک تجزیه کاملتر از قبلی است. در شکل نهایی یک WSB در ساختار و چیدمان بسیار شبیه طرح اصلی است. هر مورد در یک مرحلة خاص از WBS متوالیاً شماره گذاری شده است (برای مثال: 10 و 10 و 30 و 40 و 50) هر مورد در مرحلة بعدی در طی شمارة منشاء اصلی خود شماره گذاری شده است. (برای مثال 1/10 و 2/10 و 3/10 و 4/10) WBS ممکن است در شکل یک دیاگرام کشیده شود. (چنانچه ابزارهای خودکار آماده باشند.) یا در یک نمودار شبیه کشیدن یک طرح.
WBS با دو فعالیت رو یهم رفته شروع می شود که نمایندة کلیت کارهایی هستند که پروژه را تشکیل می دهند. این نام طرح پروژه WBS می شود. استفاده از روش کار یا طول عمر مسیستم (تحلیل، طراحی و اسباب تکمیل) بعنوان یک راهنما قدم می گذارد پروژه به قدم های اصلی اش تقسیم شده است. اولین مرحلة پروژه وارد کردن اطلاعات است. مرحلة دوم اصلی تحلیلی است که پیرو طراحی، ترسیم، تست کردن، تکمیل و پیگیری دقیق انجام وظایف است. هرکدام از این مراحل باید به مرحلة بعدی جزئیاتش شکسته شوند و هرکدام از آنها، بازهم به مراحل کاملتر جزئیات، تا به یک فعالیت قابل مدیریت برسد. اولین WBS برای طول عمر پروژه به این صورت خواهد بود.
دسته بندی | ریاضی |
بازدید ها | 6 |
فرمت فایل | doc |
حجم فایل | 10 کیلو بایت |
تعداد صفحات فایل | 12 |
راهبردهای حل مسأله در ریاضی
مقدمه
مسأله را می توان به زبان ساده تعریف کرد. هر گاه فردی بخواهد کاری انجام دهد ولی نتواند به هدف خود برسد، برایش مسأله ایجاد می شود. به عبارت دیگر هر موقعیت مبهم یک مسأله است. حل مسأله نوعی از یادگیری بسیار پیچیده است. مسأله و تلاش برای حل آن جزئی از زندگی هر فرد است. فرایند برخورد با شرایط زندگی همان مسأله است.
دو دیدگاه متفاوت در آموزش ریاضیات نسبت به حل مسأله وجود دارد:
1. ریاضی یاد بدهیم تا دانش آموزان بتوانند مسأله حل کنند.
2. ریاضی را با حل مسأله آموزش دهیم.
در دیدگاه اول آموزش ریاضی مطابق با محتوای موضوعی است و مفاهیم متفاوتی تدریس می شوند. انتظار داریم دانش آموزان با استفاده از دانش ریاضی خود مسائل متفاوت را حل کنند. اما در دیدگاه دوم آموزش ریاضیات از طریق حل مسأله اتفاق می افتد. یعنی دانش آموز مسأله حل می کند و در ضمن آن محتوا و مفاهیم جدید ریاضی را می سازد، کشف می کند و یا یاد می گیرد . در حال حاضر ، دیدگاه دوم در آموزش ریاضیات بیش تر مطرح است. در این نگاه حل مسأله نقطه ی تمرکز یا قلب تپنده ی آموزش ریاضیات است.
مهارت حل مسأله
اگر از معلمان ریاضی سؤال شود که مشکل اصلی دانش آموزان در درس ریاضی چیست؟ به یقین خواهند گفت: آنها در حل مسأله ناتوان هستند.
درمطالعه ی تیمز نیز همین موضوع را شاهد بودیم. چون در اغلب مسأله های آزمون کتبی این مطالعه عملکرد دانش آموزان پایین است. در واقع می توانیم بگوییم دانش آموزان توانایی یا مهارت حل مسأله را ندارند.
یکی از دلایل این ناتوانی ، فقدان طراحی برای آموزش مهارت حل مسأله به دانش آموزان بوده است. یا به عبارتی معلمان به آنها یاد نداده اند که چگونه مسأله را حل کنند. هر گاه دانش آموزان با مسأله ای روبروه شده و از حل آن عاجز مانده اند معلمان تنها به بیان راه حل یا پاسخ مسأله اکتفا کرده اند و نگاه های پرسش گر، کنجکاو ومتحیر دانش آموزان با این سؤال باقی مانده است: معلم ما چگونه توانست مسأله را حل کند؟ راه حل مسأله چگونه به فکر او رسید؟ چرا ما نتوانستیم راه حل مسأله را کشف کنیم؟
در خیلی از مواقع معلمانی که سعی کرده اند به طریقی حل مسأله را به دانش آموزان خود یاد دهند، راه را اشتباه رفته اند و آموزش های نادرست داده اند. برای مثال به دانش آموزان گفته اند: عددهای مسأله بسیار مهم اند. زیر آن ها خط بکشید. فراموش نکنید که باید از آن ها استفاده کنید. همین آموزش نادرست باعث شده است. دانش آموزان اطلاعات مسأله را به خوبی تشخیص ندهند. وقتی مسأله زیربرای دانش آموزان کلاس سوم مطرح شد، آن عدد 747 را در عملیات مسأله دخالت دادند و با آن عدد عبارت های جمع و تفریق و ... نوشتند:
« یک هواپیمای بوئینگ 747 با 237 مسافر در فرودگاه نشست و 130 مسافر را پیاده کرد. حالا این هواپیما چند مسافر دارد؟
یا برای دانش آموزان گفته اند که درمسأله بعضی از کلمه ها بسیار مهم است. برای مثال اگر کلمه روی هم را دیدید مسئله مربوط به جمع است و اگر کلمه ی اختلاف را دیدید حتماً باید تفریق کنید.
به همین دلیل در مسأله زیر که در مطالعه ی تیمز (2003) آمده بود، عده ای از از دانش آموزان کلاس چهارم شرکت کننده. در این مطالعه به اشتباه افتادند و مسأله را به جای ضرب، جمع کردند.
«در یک سالن سینما 15 ردیف صندلی وجود دارد. در هر ردیف 19 صندلی قرار دارد . این سالن روی هم چند صندلی دارد؟ »
بهتر است این روش های آموزش نادرست را به کار نبریم و به دنبال طرحی برای آموزش حل مسأله به دانش آموزان باشیم.
آموزش حل مسأله
آیا حل مسأله آموزش دادنی است؟ یکی از دلایل فقدان طرحی برای آموزش حل مسأله به دانش آموزان ، این است که آموزشگران ریاضی تا چندین سال پیش معتقد بودند که حل مسأله آموزش دادنی نیست بلکه یک هنر یا ویژگی و توانایی است که بعضی از انسانها دارند و بعضی ندارند. بنابراین هیچ کس تلاش برای حل مسأله به دانش آموزان نمی کرد. اما تعداد کسانی که درمورد آموزش حل مسأله تحقیق می کنند بیش تر است.
یکی از افرادی که در مورد چگونگی حل مسأله و آموزش آن تحقیق کرد جرج پولیا است. حاصل کار او در کتاب «چگونه مسأله حل کنیم» منتشر شد. مرحوم احمد آرام این کتاب را ترجمه کرده است. او در مقدمه ی کتاب خود می گوید: « من یک ریاضیدان هستم. متخصص آموزش ریاضی نیستم، اما علاقمندم بدانم چرا من می توانم مسأله ریاضی را حل کنم و دیگران نمی توانند؟ چرا بعضی از دانشجویان مسأله ریاضی را حل می کنند ولی بعضی نمی توانند؟ او همین سؤال ها را دنبال کرد و مدلی برای تفکر حل مسأله و آموزش راهبردها ارائه کرد. پولیا دو حرف اساسی دارد. 1- مدل چهار مرحله ای برای تفکر حل مسأله 2- آموزش راهبردها که البته نکته دوم در آموزش اهمیت بیشتری دارد.
مدل چهار مرحل ای پولیا
فرایند تفکر حل مسأله برای افراد مختلف متفاوت است. پولیا تلاش کرده تفکر حل مسأله را به نوعی مدل سازی کند. او الگویی چهار مرحله ای را مطرح کرده است. در فرایند حل مسأله این چهار مرحله چهار گام طی می شوند تا یک مسأله ریاضی به طور کامل حل شود. مدل چهار مرحله ای او به این مشکل است:
دسته بندی | ریاضی |
بازدید ها | 9 |
فرمت فایل | doc |
حجم فایل | 33 کیلو بایت |
تعداد صفحات فایل | 52 |
آموزش ریاضی با روش و فنون جدید ویژة پیش دبستان ، دبستانی ، دورة راهنمایی تحصیلی
فصل اول
کلیاتی درباره آموزش ریاضی
اهمیت ریاضی در زندگی بشری
پیشرفت دانش و تمدن بشری مرهون علم ریاضی است به طوریکه ریاضی پایه واساس کلیه علوم اعم از علوم انسانی (روان شناسی ، جامعه شناسی ، فلسفه ، تاریخ ، جغرافیا ، ادبیات ، شعر و موسیقی ، هنر و…..) و علوم تجربی (زیست شناسی ، زمین شناسی ، فیزیک ، شیمی ، پزشکی، نجوم ، فنون ، مکانیک ، عمران ، ساختمان ….. )و ریاضی جزئی از اجزاء لاینفک زندگی معمولی در معا ملات ، تغذیه و فنون و کارهای معمولی که بشر در روزمره با آن سر و کار دارد ، به حساب می آید .
در علوم اجتماعی به ویژه جامعه شناسی ،ارزش و قطعیت معتبر است چنانکه از آمار بعنوان یکی از وسایل مهم تحقیق استفاده می گردد و محققین در اغلب موارد مانند تحقیق در موضوع خود کشی ها ، کثرت ازدواج ها ، شیوع وافزایش طلاقها و بالا رفتن و یا پائین آمدن نرخ ها و موارد زیادی مانند آنها با استفاده از اطلاعات آماری تحقیقات خود را ارزش علمی می بخشد .
اهمیت و لزوم هندسه در معماری ، حساب در بانکداری و صدها موارد کاربرد ریاضیات در زندگانی عملی می توان سخن به میان آورد .
در مورد ارزش و قطعیت و اعتبار ریاضیات در علوم نیز کافی است تکرار نمائیم که دانشمندان اغلب کشفیات و معلومات حاصله را هنگامی روشن و قطعی می شمارند که می توان آنها را به صورت اعداد یا فرمولهای ریاضی نشان داد و به عبارت دیگر کیفیت را به صورت کمیت عرضه داشت و در این راه به اندازه ای پیش رفته اند که گفته اند:
(شناخت عبارتست از اندازه گیری ) اگر امروز قسمت عمده وسایل و لوازم کار گاهها و آزمایشگا هها را وسایل اندازه گیری تشکیل می دهند علتش همین قطعیت علوم ریاضی است که موضوع آن کمییت و مقدار است.
زمان را نیز با استفاده از جنبش حرکت متحدالشکل که در مکان صورت می گیرد اندازه می گیرند ـ چنانچه ساعت و دقیقه و ثانیه را از جنبش حرکت متحدالشکل عقربه ای در روی صفحه ساعت اندازه می گیرند در حقیقت در اینگونه موارد ، مکانی که چند متحرک یکنواخت طی می نمایند اندازه گرفته میشود.
چنانکه می دانیم مکانیک نیز در بدو پیدایش خود صورت دانش تجربی داشته است و بعد استنتاجی و عقلانی گردیده است چنانکه گالیله بنیانگذار مکانیک خود قانون سقوط اجسام را به وسیله تجربه و آزمایش معلوم داشته و اثبات کرده است .
ستاره شناسی نیز که مطالعات اجسام آسمانی و حرکات آنها است امروزه کاملا جنبه ریاضی دارد ، بعبات دیگر ، ستاره شناسی که قسمت عملی مکانیک ومورد اعمال قوانین مکانیکی است در بدو پیدایش خود دانشی بود که روش آن منحصرا مشاهده بوده است . زیرا کرات آسمانی را نمی توان تحت آزمایش در آورد ، ولی بعدا به صورت استنتاجی و عقلانی در آمده و در قالب ریاضیات ریخته شده و بدین ترتیب جنبه تجربی و ریاضی پیدا کرده است .چنانکه قانون جاذبه نیوتون (Newton) (1727-1642 ریاضیدان و فیریسین و ستاره شناس ) کاشف قانون مزبور به وسیله آن حرکت ستارگان را تعیین کرده است قانونی است تجربی که به صورت فرمول ریاضی بیان شده است1 .
وقتی در آثار باستانی و تاریخی نظیر تخت جمشید و مسجد شیخ لطف اله اصفهان و چهل ستون و دیگر آثار باستانی نظری بیفکنیم در آن آثار با عظمت علم ریاضی کاملا مشهود است .
علما و دانشمندانی نظیر (محمد بن طوسی الخوارزمی ) که در آثار وی سنت های ریاضی یونانی و هندی با هم ترکیب شده است و در قرن نهم میلادی سوم هجری چندین اثر از خود برجای گذاشته است که کتاب «المختصر حساب الجبر و المقا بله از خود به جای گذاشته » این کتاب به نام (Liber Algorism) لیبرالگوریسمی یعنی کتاب الخوارزمی به لاتین ترجمه شده که کلمه انگلیسی ( Algorism ) به معنی حساب و محاسبه و روش محاسبه را از آن گرفته اند . ( ص 147 علم و تمدن در اسلام . نوشته سید حسن نصر ) گذشته تاریخ ایران مشحون از این است که علما و دانشمندان به علم ریاضی اهمیت فراوانی قائل بوده اند .
علمائی همچون ابن سینا ، خیام ، ابوالوفای بوزجانی شارح کتاب جبر خوارزمی – ابن هثیم – اخوان الصفا – ابوسهل کوهی که یکی از علمای جبر اسلامی است . فارابی که نظریة موسیقی ایران زمان خود را تکمیل کرده است و همین موسیقی سنتی زنده حاضر باقی مانده است 1.
ابوریحان بیرونی چند تألیف ریاضی و نجومی بسیار مهم از دوره قرون وسطائی اسلام بر جای گذاشته و در مسائلی همچون رشته های عددی و تعیین شعاع زمین کار کرده است .
معاصر وی ( بوبکر الکرخی ) از خود دو اثر اساسی در ریاضیات اسلامی باقی گذاشته است :
‹ یکی الفخری در جبر و دیگری الکافی فی الحساب 2›
قرن پنجم / یازدهم : که در آن سلجوقیان به قدرت رسیدند چندین ریاضیدان بزرگ در این دوره وجود داشته اند ، بزرگترین ایشان عمر خیام بود و گروهی از منجمان و ریاضیدانان دیگر در گاه شماری ایران تجدید نظر و آن را اصلاح می کردند و برجسته ترین آنان خواجه نصیرالدین طوسی است که به شیوائی و راهنمائی او و چند تن دانشمند و بالخاصه ریاضیدانان رصدخانه مراغه گرد یکدیگر جمع آمده و به کار رصد و دیگر کارهای علمی مشغول شده بودند .
و دیگری ابن بناء مراکشی در قرن هشتم / چهاردهم
روشهای تازه ای از علم اعداد برداشت که یک قرن بعد غیاث الدین جمشید در محاسبه و نظریه اعداد بزرگترین ریاضیدانان اسلامی است . کاشف حقیقی کسر اعشاری او بوده و اندازه بسیار صحیحی از ( عدد پی ) را بدست آورده است . او نیز روشها و تدبیر های تازه ای برای عمل حساب و محاسبه اکتشاف کرده است .
کتاب مفتاح الحساب وی اساسی ترین تألیف از نوع خود در زبان عربی است .
در دوره صفویه در ایران معماران و مهندسان مدارس و مساجد و پل های آن زمان همه از ریاضیدانان قابلی بودند :
معروف ترین چهره ریاضی ( بها الدین عاملی ) است .
تألیف ریاضی وی تلخیص و تحریری از آثار استادان سلف است یکی از معاصران بها الدین عاملی ، ملامحمد باقر یزدی که در آغاز قرن دهم/ شانزدهم شکوفا شد مطالعات و تحقیقات اصیل و ابتکاری در ریاضیات داشته است .
از افتخارات ما ایرانیان و مسلمانان این بوده است که همیشه در علوم به ویژه علم ریاضی پیشرو و پیش قدم بوده ایم و امروزه هم جهان متمدن پیشرف خود را مرهون علم ریاضی می داند. پیشرفتهائی که در امور مختلف صنعت و فنون ، ماهواره ای ، رایانه ای موشک های دور برد ، ساختمانهای آسمان خراش ، علوم تکنولوژی و صنعت هواپیما سازی ، ماشین سازی ، جاده سازی ، کشاورزی های مدرن و پیشرفته . صنایع شیمیائی و دارو سازی و علم پزشکی و جراحی به طور کلی کلیه صنایع به خاطر این است که دنیای متمدن به علم ریاضی اهمیت فوق العاده ای قائل است و تا به حدی که امروزه ریاضیات که پایه و اساس به حساب می آید و در کلیه مقاطع تحصیلی از پیش دبستانی ، دبستان ، راهنمائی و دبیرستان و دانشگاه ریاضیات اهمیت خود را دارا می باشد.
از روشهای گوناگون و فعال و پیشرفته در خلال بازی و امکانات کمک آموزشی و تکنولوژی آموزشی و ایجاد انگیزه و علاقه در آنان موجبات ایجاد و مفاهیم اولیه ریاضی را فراهم می سازند و بالنتیجه پیشرفت و شکوفائی این علم مهم در کودکان و دانش آموزان و دانشجو یان را فراهم آورده و باعث ایجاد رشد و صنعت تکنولوژی می گردد .
امید است با توجه بیشتر به این علم و استفاده از روش های فعال ، امروزه هم بیش از پیش به آموزش ریاضی در مقاطع مختلف قدم برداشته و موجباتی فراهم آید تا مغز های متفکر ریاضیدان و صاحب خرد روز به روز بر شمار آن در این مرزو بوم افزوده گردد .
از آنجا که علم ریاضی در پیشرفت سایر علوم نقش عمده ای داشته یکی از عوامل توسعه فن آوری در دهه های اخیر بوده است توجه بیشتر به آموزش همگانی در دنیای امروز ضروری به نظر می رسد .
اتحادیه بین المللی ریاضیدانان در سال 1992 با توجه به این ضرورت به منظور جلب توجه جهانیان به اهمیت جایگاه علوم ریاضی سال 2000 را به عنوان سال جهانی ریاضیات پیشنهاد کرد این پیشنهاد مورد موافقت سازمان علمی ، آموزشی و فرهنگی ملل متحد ( یونسکو ) قرار گرفت و با استقبال بیشتر کشور های جهان برای تصمیم و گسترش ریاضیات در میان شهروندان خویش ، شیوه های آموزش این علم را بهبود بخشید و به توسعه آن هر چه بیشتر اهتمام ورزند .
برای دستیابی به این هدف ارزشمند عبارت های « ریاضیات برای همه » « ریاضیات در راه توسعه » به مثابه شعارهای اصلی سال جهانی ریاضیات اعلام شده است .
بیشتر کشورهای جهان از جمله ایران بر تحقق بخشیدن این شعارها در سال 2000 میلادی برنامه هائی را تنظیم و اجرا می کنند . ( نقل از پشت جلد ریاضی سال سوم راهنمائی تحصیلی – 1379 )
روشهای تدریس را به 3 دسته تقسیم می شوند.
- روش زبانی و شفاهی
- روش مکاشفه ای
- روش فعال ( تجربه و عمل )
الف – روشهای شفاهی و زبانی
معمولا معلم متکلم وحده است با توجه به کلیه قوانین یا نتایج معمولا توسط معلمان قواعد و قوانین و چگونگی اجرای برنامه های ریاضی را بیان نموده و شاگردان هم به طور ماشینی آن قواعد را فرا گرفته و در حل مسائل که معمولا هیچ گونه کاربردی در زندگی معمولی آنها ندارد به کار می برند و بیشتر معلمان متوسل به ترس و تنبیه و فشار شده و با اجرای قبیل ترفند ها کودکان را وادار به از حفظ کردن و بازگوئی می نمایند .
« صفت بارز این روشها آن است که در گفتار معلم و نوشته کتاب و به طور کلی به علم قراردادی 1 اهمیت داده می شود .
تدریس با تعریف چند آغاز می شود ، سپس حقایق و روابط ریاضی از تعاریف مذکور با روش منطقی استنتاج و به کمک الفاظ و عبارات منتقل میشود 2.
در روش زبانی و شفاهی کافی است کودکان از عهده خواندن و نوشتن اعداد چهار عمل اصلی برآیند و بدون آنکه با مفاهیم آن آشنا شوند و اجرای سریع حساب برای آنها مهم است .
چون آمها معتقدند که (اولا درک عمیق مفاهیم و روابط ریاضی از عهده کودکانی که تازه به دبستان آمده وحداکثر هفت سال دارند خارج است .
« ثانیا بسیاری از اطفال امروزه حساب را در زندگی فقط برای حوایج روزانه به کار خواهند برد و هیچ وقت نیازی به درک عمیق روابط نخواهند داشت» .
در این روش که معلم قواعد را دیکته می کند برای هر یک چند مثالی می آورد. سپس به کمک تمرینهای متعدد می کو شد و برای اجرای اعمال هر یک مثالی می آورد سپس به کمک تمرینهای متعدد اجرای اعمال را به صورت انعکاس مشروط در آورده انجام صحیح و سریع آنها را در این راه میسر سازد.
تمرینهای پی در پی روزانه ، هفتگی و ماهانه حقایق وقضایا را در حافظه نقش خواهد بست باید به کمک هزاران هزار تمرین طرز اجرای اعمال را باید در مراکز حرکت ثبت کرد .
- عبارت« الدرس حرف و التکرار الف » مؤید همین معنی است .معایب این روش ها کاملا مشهود است اولا : هیچ گونه انگیزه و رغبتی در یاد گیرندگان ایجاد ننموده وثانیا : مفاهیم غلط و غیر واقعی در ذهن دانش آموزان ایجاد نموده وآنها را نسبت به این درس بیزار کرده و آنها را از این علم می تر ساند.
نگارنده که چندین سال است در روش تدریس ریاضیات در دوره های مختلف مشغول است . معمولا در شروع ترم جدید تحصیلی چند سئوال طبق نمونه های زیر برای دانشجویانی که این واحد را انتخاب نموده وبنا است آن را بگذرانند مطرح می نماید :
1- یک سانتی متر مکعب را به آنها نشان داده پرسیده می شود که به این چه می گویند ؟ و چند تای آن یک دسی متر مکعب می شود؟
لیتر چیست؟ = متر مکعب را بطور صحیح نشان دهند .
2- مفهوم اعمال کسری را با یک مثال نشان دهید .
3- مفهوم اعمال کسر اعشاری زیر را نشان دهید .
4- موزائیکه شما روی آن هستید اگر هر بعدش 25 سانتی متر باشد چند تای آن یک متر مربع می شود ؟
5- می دانید که یک شبانه روز 24 ساعت است هر ساعت را چگونه محاسبه کرده اند ؟
6- فرق بین سال قمری وسال شمسی چیست و چرا در سال 1380 سال شمسی معادل سال 1423 سال قمری است ؟
و نظایر این سؤالها، با توجه به اینکه تعداد هر کلاس 40 نفر است . از سوال اول 99% از سوال دوم 100% از سوال سوم 100% از سوال چهارم 65% از سوال پنجم 50% از سوال ششم 60% نتوانسته اند جواب صحیح را ارئه نمایند.
از معایب دیگر روشهای شفاهی وزبانی این است که به تدریج قدرت هوش کودک ضعیف می کند به عقیده کلا پارد1 طبیب و روانشناس سویسی «باهوش کسی است که بتواند بسهولت و سرعت عقیده خود را بروضعی که برایش بی سابقه است منطبق سازد » ( ص 8 همان کتاب )
از معایب دیگر این روش این است که معلو ماتی که به این طریق کسب می شود با یکدیگر ارتباط نداشته زود فراموش می شود چون دانش آموز در ایجاد یا جمع اوری آنها سهمی نداشته است و بخصوص که بیشتر مفاهیم ریاضی ظاهرا برای دانش آموزان هیچ گونه کاربردی در زندگی آنها نداشته و ندارد و این باعث می شود که دانش آموزان فکر کنند که یادگیری ریاضی برای آنها امری تحمیلی و فقط برای امتحان دادن و نمره گرفتن می خوانند چون با مفاهیم آشنا نیستند و مفهوم غلط در ذهن آنها ایجاد شده است که یادگیری آن را امری عبث و بیهوده می انگارند و نسبت به ان بیزار شده و برای همیشه از آن میترسند حتی برخی از دانشجویانی که دیپلمه ریاضی بوده اند و به تحصیل در دوره ریاضی مشغولند به سوالهایی که به مفاهیم ریاضی مربوط مطرح می شود از پاسخ دان صحیح ناتوانند و این امر می رساند که آموزش ریاضی آن هم به این طریق ( شفاهی – زبانی ) کاری است عبث و بیهوده و موجب اتلاف وقت وباعث دلزدگی وبیزاری دانش آموزان نسبت به درس ریاضی می شود و تا جایی که اکثر قریب به اتفاق دانش آموزان دوره راهنمایی و متوسطه در درس ریاضی ضعیف و از ریاضی بیزارند واین نتیجه اجرای روش ناصحیح زبانی وشفاهی در دوره پیش دبستانی و دبستانی و راهنمائی است . اگر چه امروزه کم و بیش نسبت به عیوب روش شفاهی و زبانی پی برده اند و مرتبا به معلمان توصیه می شود که از این روش صرفنظر نمایند لیکن به دلائل متعدد من جمله تعداد زیاد شاگردان – نبودن امکانات آموزشی عدم آگاهی معلمان نسبت به تدریس با روش فعال – حجم زیاد کتاب و مجبور بودن معلم به تمام کردن برنامه درسی امکان کاربرد روش فعال به اندازه کافی مقدور نیست .
از معایب دیگر روش زبانی و شفاهی افت تحصیلی است که معمولا دانش آموزان گرفتار آن می شوند که اجرای روشهای کهنه و پوسیده زبانی و شفاهی موجب افت تحصیلی است که معمولا دانش آموزان گرفتار آن می شوند که بدون شک اجرای روشهای کهنه و پوسیده زبانی و شفاهی در ایجاد تکرار پایه تأثیر داشته است .
تکرار پایه تحصیلی در اثر عدم توفیق در امتحانات پیش می آید .
کودک یا نوجوانی که در نتیجه عدم احراز شرایط ارتقاء ناچار برنامه ای را تکرار می کنند از هر دو جنبه شخصی و مادی دوره گذشته خود را از دست داده و از نظر اجتمائی قسمتی از امکانات تربیتی جامعه را بیهوده تلف کرده است .( 286 مسائل آموزش و پرورش تألیف محمد طاهر معیری 1376 ) .
بررسی آثار ثبت نامهای اخیر مدارس کشور نشان می دهد که در قبال هر 1000 ثبت نام پایه اول در دبستانها پس از پنج سال 797 در دوره راهنمائی پس از سه سال 771 نفر و پس از چهار سال 624 نفر اخرین پایه تحصیلات در دوره مربوطه به تحصیل اشتغال داشته اند .
با در نظر گرفتن نسبت تقریبی در امتحانات پایانی در دوره های مزبور می توان دید که در قبال هر 1000 ثبت نام پایه اول تحصیلات هر یک از سه سطح مزبور پس از گذشتن زمان معمولی یک دو.ره کامل از مدارس ابتدائی ، راهنمائی متوسطه به ترتیب 557 و 648 و 500 درصد افت حاصل می شود .1
در مورد افت تحصیلی عوامل گوناگونی است که آن را به شش دسته تقسیم کردهاند :
1- نظام ارزشی 2- نظام آموزشی 3- مدیریت 4- معلم 5- نحوه تدریس و ارزشیابی 6- کتاب های درسی ، کتابخانه و وسائل کمک آموزشی که در این جهت نحوه تدریس و ارزشیابی می پردازیم :
نتیجه یادگیری طوطی وار عبارت از عدم فراهم شدن موجباتی جهت به کار انداختن قوا و استعداد های متعلمین و در نتیجه آماده خور بار آمدن و تنبل شدن آنها که باعث می شود در بزرگسالی تسلیم و مطیع باشند
این روش موجب ضعف روح تحقیق و روحیه استفاده پذیری و قبول دانشجو و دانش آموز بدون کوچکترین اعتراض و تحمل سختی و خشونت از طرف بزرگتر ها توجه به حفظ تکرار کلمات به جای علائق به فهم حقایق مندرج در آنها و اولویت یافتن علوم منقول بر معقول زیرا تعقل ممکن است سلطه معلم و مافوق را به خطر اندازد و البته حاصل این همه رکود ذهنی و عجز فکری است1 .
دکتر محمد حسین نوری – در روزنامه اطلاعات ( یکشنبه 22 اسفند 6700 شماره 18710 صفحه 12 تحت عنوان « در دانشگاه باید سطح درس را از دوره ابتدائی شروع کند» مرقوم فرموده اند : در طول تدریس ( 67 – 62 ) در گروه جغرافیائی دانشگاه مشهد متوجه شدند که سطح علمی دانشجویان به ویژه در رابطه یا علم ریاضی در حد بسیار پائین است .برای درک بهتر علمی دانشجویان لازم دانستند از آنها امتحان به عمل آید .
ده سئوال در حد سوم راهنمائی تهیه شده و در اوائل جلسه مهرماه 67 بین دو گروه متفاوت امتحان به عمل آید سئوالات برای هر دوگروه یکسان بود .تعداد کل دانشجویان شرکت کننده 170 نفر پسر و دختر بود . دو نفر از این عده تنها کسانی بودند که نمره بیش از 14 و 15 گرفته اند یکی از آنها در سال 54 و دیگری در سال 59 دیپلم گرفته بود و تعداد 168 نفر بقیه که همه نمره کمتر از 10 داشتند دیپلمه های بعد از 1360بودند که نمرات اکتسابی آنان در امتحان مذکور فاجعه آمیز است از 168 نفر دیپلمه ای که به دانشگاه راه یافته اند فقط 12 نفر می توانند محیط و مساحت دایره به شعاع 3 سانتی متررا حساب کنند .
دسته بندی | ریاضی |
بازدید ها | 7 |
فرمت فایل | doc |
حجم فایل | 67 کیلو بایت |
تعداد صفحات فایل | 11 |
تابع متناوب
تعریف:
تابع f را متناوب گوئیم هرگاه وجود داشته باشد به طوری که:
کوچکترین مقدار مثبت t را در صورت وجود با T نشان داده و به آن دوره تناوب اصلی تابع گوئیم ( و و t بستگی به x ندارد) به عبارت دیگر در تابع متناوب دوره تناوب عبارت است از کوچکترین مقدار مثبت که وقتی به متغیر اضافه شود مقدار تابع فرق نکند.
دورة تناوب روی نمودار: قسمتی از نمودار که بر اساس آن بتوان قسمتهای دیگر را رسم کرد.(الگویی از یک نمودار میباشد)
قرارداد:
هرجا صحبت از دوره تناوب می کنیم منظور دوره تناوب اصلی یا کوچکترین دوره تناوب تابع است.
نکته 1: تابع ثابت متناوب است و هر عدد حقیقی می تواند دوره تناوب آن باشد ولی کوچکترین دوره تناوب (دوره تناوب اصلی) ندارد.
نکته 2: در توابع ثابتی که به طور متوالی و منظم ناپیوسته هستند فاصله دو نقطه انفصال متوالی دوره تناوب اصلی تابع است.
نکته 3:ممکن است مجموع، تفاضل و… دو تابع که هیچکدام متناوب نیستند متناوب باشد.
دسته بندی | ریاضی |
بازدید ها | 8 |
فرمت فایل | doc |
حجم فایل | 9 کیلو بایت |
تعداد صفحات فایل | 9 |
تاریخچه ریاضیات در چین
خلاصه ایی از تاریخ ریاضیات در چین
منابع اولیه عبارتند از: «گسترش ریاضیات در چین و ژاپن» اثر Mikami و ریاضیات چینی اثر Li yan و Dushiran تاریخچه زیر را مشاهده نمائید:
1- نماسازی عددی، محاسبه ریاضی، مقیاسهای شمارش
نماد سازی اعشاری سنتی- یک نماد برای هر یک از 10.9.8.7.6.5.4.3.2.1،100 و 1000 و 10000 و..
بنابراین 2034 نوشته میشود با نمادهایی به شکل 2 و 1000و3و10 و4 یعنی دوبار 1000 و 3 بار 10 باضافة 4. که باز میگردد به روش نوشتاری چینی.
• محاسبه با استفاده از تکه های کوچک خیزران بعنوان مقیاسهای شمارش شکل گرفت. شکل قرار گرفتن مقیاسهای شمارش نمایانگر یک روش اعشاری ساده بوده و برای نوشتن عبارات طولانی، عدد صفر نمایانگر یک فاصله بود. ترتیب نوشتن از چپ به راست شبیه روش شمارش عربی در 400 سال قبل از میلاد و یا زودتر بوده.
• جمع: نمادهای شمارش برای دو عدد در پائین قرار می گرفتند و یک عدد بالای دیگری اعداد از چپ به راست با هم جمع می شدند و در صورت نیاز انتقال انجام میشد. منها نیز به همین روش.
• ضرب: جدول ضرب 90*9 ضربهای اعداد بزرگ مانند روش ما با نتیجهگیری بر مبنای مقیاسهای فیزیکی انجام میشد. تقسیمهای اعداد بزرگ مانند روشهای رایج ولی نزدیکتر به روش galley بود.
2- Zhoubi suanjing (بهترین روش محاسبة شاخصها و منحنی های صعودی) (صد سال قبل از میلاد مسیح)
• یکی از تئوریهای منحنی های صعودی راتوصیف میکند قبل از آن Han dynasty (206 سال قبل از میلاد مسیح) ریاضی زودتر در کتاب سوزی 213 قبل از میلاد مسیح.
• بیان و کاربرد هندسه فیثاغورثی برای مساحی، ستاره شناسی و غیره. گسترش هندسه فیثاغورثی
• محاسباتی شامل اعداد کسری معمولی
3- نه فصل در مورد هنر ریاضی اثر jiuzhang suanshu (صد سال قبل از میلاد مسیح) گرد آوری ریاضیات بر پایه Han dynasty 249 مسئله در 9 فصل.
کاملترین مرجع مساحی و موثرترین کتاب ریاضیات هینی. گزارشات و تفسیرهای فراوان.
فصل 1: محاسبه مساحت: مباحث سیستماتیک در مورد الگوریتمهای مورد استفاده در شاخصهای شمارش اعداد کسری شامل alg برای LCM , GCD مساحت اشکال سطح شامل مربع، مستطیل. مثلث، ذوذنقه،دایره و قطاع دایره و قطاع کره دوایر متحد المرکز، بعضاً تخمینی و بعضاَ دقیق.
بخشهای 2و3و6 در مورد تناسب، سری ها، توزیع نسبت و ضرایب صحیح بخش 4، روشهای محاسبه سطح و حجم. توضیح روشهای معمول برای محاسبه ریشهای مربع و مکعب می اشد اما نتایج را به کمک محاسبه با نمادهای عددی بدست می آورد.
بخش 5: مشاوره های ساختمانی. حجم مکعب، متوازی السطوح، هرم ناقص هرم سه وجهی، هرم، استوانه، چهارضلعی. مخروط و مخروط ناقص و کره بعضاً تخمینی و بعضاً با 3-Pi
بخش 7: زیادی ها و کسرها: اشکال خطا و اشکال خطا دوگانه.
بخش 8: آرایش مستطیلی: بیان کننده روشهای محاسبه برای حل معادلات 3 مجهولی یا بیشتر. شامل بکارگیری اعداد منفی (مرکز برای اعداد مثبت و سیاه برای اعداد منفی) قواعد اعداد صحیح.
بخش 9: مثلث های کامل: کاربرد تئوری فیثاغورث و مثلث های متشابه، حل معادلات درجه ها با توضیح الگوریتم ریشه مربع، تنها معادلات به شکل X2+ax=b با a و b مثبت
Sunzi 4
روشهای کاربردی ریاضی خود را نوشته. شامل «باقیماندة مسائل چینی» یا «مسئله Master Sun» . n را پیدا کرده وقتی که شما با تقسیم 3 باقیماندة 2 را بدست میآورید، با تقسیم بر 5 باقیماندة 3 را بدست می آورید و با تقسیم بر 7 باقیماندة 2 را بدست می آورید. راه حل او: اعاد 40، 63 و 30 را جمع کنید تا به عدد 233 برسید، از عدد 210 کم کنید تا به عدد 23 برسید.
دسته بندی | ریاضی |
بازدید ها | 6 |
فرمت فایل | doc |
حجم فایل | 12 کیلو بایت |
تعداد صفحات فایل | 14 |
جشنواره تدریس برتر ریاضی (پایه پنجم)
مشخصات:
نام درس: ریاضی ص 91-92-93-94-95
عنوان درس: احجام
تعداد دانش آموزان: 14 نفر
تهیه کننده: اعظم قربانی پارام، گروه 12
روز: تاریخ: /11/84
مدت تدریس: 45 دقیقه اجرا: 25 دقیقه
مقطع: ابتدایی سال تحصیلی 85-84
هدف کلی: دانش آموزان با خصوصیات و ویژگیهای کلی حجم، آشنا شوند.
هدفهای جزئی: «دانستنی ها – مهارتها – نگرش ها»
الف) دانستنی ها – حیطه شناختی
1- دانش آموزان با مفهوم حجم و با شکلها – اندازه ها – و فضاها آشنا شود.
2- دانش آموزان با علم و آگاهی و شناختن علم هندسه و شناخت روابط بین عناصر متفاوتی مثل (زاویه ها – ضلع ها – سطح – حجم) آشنا شود.
3- دانش آموزان با نام و اشکال هندسه ی مسطحه و صاف که دارای دو بعد (طول و عرض می باشد مثل د ایره – مثلث – مربع و ... آشنا شود.
هدفهای جزئی
4- دانش آموزان همچنین با احجام که دارای 3 بعد که شامل (طول و عرض و ارتفاع) می باشد آشنا بشوند.
5- با وسایلی که می توان این اشکال هندسی را شناخت آشنا می شود و کاربرد آنها را در درس و زندگی روزمره می شناسد.
ب) مهارتها
1- دانش آموزان بتوانند شکل احجام را بکشند (حرکتی)
2- دانش آموزان با مفهوم این که این شکلها بر یک صفحه قرار ندارند و دارای گنجایش و حجم نیز می باشند مانند مخروطها – هرمها – استوانه ها
3- دانش آموزان به مفهوم این که به شکلهایی که دارای سقف و ته می باشند و می توانند در فضای داخل خود اشیاء دیگر را که کوچکتر باشند را جا می دهند آشنا می شوند.
4- دانش آموزان به مفهوم این که در احجام به سطحی «قاعده» گفته می شود که در کف یا بالای شکل قرار دارند آشنا می شوند.
5- دانش آموزان بتوانند با مقوا یا کاغذ A4 شکل حجم (مکعب مربع و مستطیل و چند وجهیها) را بسازند. (توان ساخت.)
نگرش ها
1- دانش آموزان به شناختن اشکال هندسی ابراز علاقه می کنند.
2- دانش آموزان به یادگیری شکلها و رسم آنها و ساختن احجام و همچنین تهیه وسایل در گروه ابراز علاقه می کنند.
3- دانش آموزان با علاقه به جمع آوری اطلاعات برای شناختن بقیه ی شکلهای چند بعدی هندسی که در کتاب نیست کوشش می کند.
4- دانش آموزان برای ساختن احجام و کشیدن آنها با کاغذ یا مقوا یا چوب ابراز علاقه می کنند.
هدفهای رفتاری
الف- با ذکر حیطه های شناختی
ب- حیطه های عاطفی
حیطه های حرکتی
1- بتواند شکل آنها را بکشد و نام آنها را بگوید. (شناختی – دانشی)
2- برای رسم شکلها و یا ساختن آنها با کاغذ A4 یا مقوا و ... در گروه شرکت کند و برای ساختن و شناختن حجم شکلها و تهیه وسایل آنها شرکت نماید. (شناختی – دانشی – عاطفی)
3- مفهوم هندسه فضایی یا سه بعدی که دارای 3 بعد – ارتفاع – طول و عرض هستند را بیان کنند. (درک مفهوم)
4- درک مفهوم این شکلها که بر یک صفحه قرار ندارند و دارای گنجایش و حجم نیز می باشند. «مخروطها – هرم ها – کره – استوانه و مکعب ها» را بشناسند و شکل آنها را بکشد یا بسازد.
5- مفهوم این که در احجام قاعده به سطحی گفته می شود که در کف یا بالای شکل قرار دارد را بیان کند.
6- با کمک گروه درک مفهوم این که حجم مکعبی که طول تمام ضلع هایش 1 سانتی متر است بوسیله یک مکعب چوبی یا مقوایی یا کاغذی بیان کنند که آن را بعنوان یک «واحد» اندازه گیری مکعبی معین می نماییم که در زندگی روزمره معمولی بعنوان «حجم» شناخته می شود را بیان نمایند.
7- با کمک افراد گروه بتوانند بیان کنند که ظرفیت و اندازه گیری عملی و علمی با استفاده از واحدهای اندازه گیری مکعبی می باشد که به آن «لیتر» می گویند.
8- با کمک افراد گروه و بوسیله مکعب هایی که خودشان می سازند با کاغذ و چسب درست می کنند (قاعده ها) و سطوح مختلف آن را بیان کنند.
9- درک مفهوم این که چند وجهی ها نیز قسمتی از اشکال فضایی می باشند را بیان کنند.
روشهای یاددهی - یادگیری «روش تدریس»
روش تلفیقی «بحث و گفتگو – سخنرانی – مشارکتی همیاری – با روش ذهنی»
الف) مرحله اول مرحله ی محسوسات «مجسم» با روش آمیخته پرسش و پاسخ – سخنرانی – نمایشی، بارش ذهنی – بحث و گفتگو
در این مرحله کتاب دانش آموزان بسته است.
ب) در مرحله دوم: نیمه محسوسات (نیمه مجسم) بصورت مکاشفه ای و همیاری دانش آموزان
ج) مرحله مجرد یا ذهنی ارزشیابی پایانی می باشد.
الگوهای تدریس: الگوی مشارکتی (همیاری) فعالیت گروهی نحوه ی تعامل و چینش کلاس: به صورت گروهی
وسایل لازم:
کتاب ریاضی – تخته – گچ – مکعبهای چوبی – لاکی – پلاستیکی – یا مقوایی یا کاغذی – چسب – لیوان، ظرف شیشه ای بزرگ استوانه ای شکل – یک نوار کاغذی – سنگ و فلز – دفتر نمره کلاس – مقوا – کاغذ A4 – کارتهای تشویقی، قوطی شیر سه گوش – جعبه دستمال – کاغذ مکعب مستطیل یا مربع شکل – کبریت – جایزه – ستاره های تشویقی – برای نصب روی عکس گروهها – مدل کلاس و نحوه تعامل و گروه بندی دانش آموزان به سه گروه: بر اساس درس احجام – 1- گروه مربع 2- گروه مستطیل 3- گروه مثلث.
ضمنا بچه ها به سه گروه 5 تایی تقسیم شده اند که یکنفر که کم می باشد خودم به آن گروه 4 نفری می پیوندم.
دسته بندی | ریاضی |
بازدید ها | 6 |
فرمت فایل | doc |
حجم فایل | 12 کیلو بایت |
تعداد صفحات فایل | 14 |
رابطه ریاضی با هوش
با دکتر على آبکار استاد ریاضى و عضو هیأت علمى دانشکده علوم دانشگاه تهران در مورد ریاضى و کاربردش در زندگى و لذت حل مسأله گفت وگویى انجام داده ایم که مى خوانید:
چرا ریاضى مى خوانیم؟ اصلاً ریاضى به چه دردى مى خورد؟
علوم ریاضى در حالت کلى پایه تمام علوم مهندسى است. ریاضى مادر تمام علوم است و به عنوان علم دقیقه مطرح مى شود هر چه علوم دیگر به ریاضى نزدیک باشند مستدل تر و قطعى تر از علومى هستند که از ریاضى دور مى شوند. ممکن است در علوم اجتماعى نظریه هاى مختلفى داشته باشیم که همه نظریه ها بسته به موقعیت هاى گوناگون درست باشند ولى در ریاضى تنها یک نظریه داریم یا درست یا غلط. اغلب تئورى هاى ریاضى ریشه فیزیکى دارند و منشأ و پیدایش آنها در مسائل علمى بوده است.
یعنى تمام فرمول هایى که در تمام این سالها کشف شده و شما زمانى خوانده اید و حالا تدریس مى کنید در مسائل علمى فیزیک و شیمى و اقتصادى کاربرد دارد؟
خیر، گاه مى دانیم که این فرمول ها چه کاربردى دارد و منتها خودمان دیگر نمى توانیم به کاربردشان بپردازیم و گاهى هم فرمول را مى دانیم و آیندگان کاربردش را پیدا مى کنند. اما یک مسأله وجود دارد هیچ علمى مستقیماً به شکوفایى و بارورى نمى رسد مگر این که بخش هایى از ریاضى در آن به کار برده شده باشد. پس ریاضیدان غیر از لذتى که خودش مى برد از روى مفاهیم ریاضى باعث رشد جامعه و تکنولوژى مى شود.
لذت؟
بله، به یک ریاضیدان در حالت حل مسأله لذتى دست مى دهد و او را ارضا مى کند در فلسفه به این حالت لذت حل مسأله مى گویند که افراد دیگر این لذت را درک نمى کنند. این حالت در ریاضى مثل گل کردن طبع شعر شاعرى است که یکباره باعث مى شود شعر بگوید.
تمام کاربردهایى که از ریاضى گفتید کاربردهایى بود که یک ریاضیدان در زندگى حرفه اى از ریاضى مى کند. آیا در زندگى اجتماعى هم از ریاضى استفاده مى شود؟ ریاضى در زندگى اجتماعى هم کاربرد دارد؟
البته، ما نباید از خودمان تعریف کنیم ولى کسى که ریاضیات مى خواند بهتر فکر مى کند و کسى که بهتر فکر مى کند بهتر زندگى مى کند.
پس به خاطر این که بهتر فکر کنیم از اول دبستان تا سال آخر دبستان ریاضى مى خوانیم؟
بله، ریاضى کمک مى کند که بهتر فکر کنیم.
براى بهتر فکر کردن راههاى بهترى هم وجود دارد. چرا شطرنج بازى نمى کنیم که فکرمان باز شود؟
شطرنج حالت خاص دارد. البته بخشى از ریاضیات هم جنبه شطرنج و بازى دارد که به صورت فرم تعمیم گسترش پیدا مى کند و در علوم دیگر استفاده مى شود.
یعنى ریاضى خواندن ما فقط به خاطر این است که بتوانیم بهتر فکر کنیم. یعنى من اگر انتگرال و مثلثات نمى خواندم نمى توانستم فکر کنم؟
خیر، این طور نیست، ریاضى در زندگى روزمره به بالابردن قوه تفکر کمک مى کند. اما کاربرد و استفاده هاى دیگرى هم دارد. فرض کنید بخشى از ریاضیات آمار است. یک متخصص علوم اجتماعى و تربیتى آیا مى تواند منهاى آمار مطالعات خودش را ادامه دهد. پس این طور نیست که فرد همان لحظه از چیزى که مى خواند بهره مند شود. من به عنوان ریاضیدان از علوم اجتماعى - ارتباطات و روانشناسى به یک حداقلى نیازمندم که در زندگى استفاده کنم. شما هم باید حداقلى از ریاضى بدانید ولى کسى نمى گوید: همه باید ریاضیدان شوند.
این حداقل مى تواند در حد چهار عمل اصلى باشد؟ این طور نیست؟
حدود را ما تعیین نمى کنیم. اتفاقاً آنها که حداقل ها را تعیین مى کنند ریاضیدان نیستند. کارشناسان روانشناسى و تعلیم و تربیت در وزارت آموزش و پرورش و وزارت علوم این حدود را تعیین مى کنند. البته این که شما مى گویید در حد چهارعمل اصلى درست نیست همانطور که گفتم حتى محققان علوم اجتماعى و علوم تربیتى هم به یادگیرى آمار احتیاج دارند و از ریاضى استفاده مى کنند. اما نظر ما این است که کمیت و حجم باید کم شود و بیشتر به کیفیت اهمیت داده شود.
گفتید کسانى که ریاضى مى خوانند بهتر فکر مى کنند آیا افراد باهوش ریاضى مى خوانند؟
ریاضى با هوش نسبت مستقیم دارد. یعنى اغلب ریاضیدان ها افراد باهوشى هستند شاید هم خود ریاضى در پروسه پرورش هوش تأثیر مى گذارد اما این بدان معنى نیست که افرادى که تمایلى به یاد گرفتن ریاضى ندارند افراد بى استعداد یا کم هوشى هستند. ریاضى با علاقه هم رابطه مستقیم دارد.
شما در تمام سالهایى که ریاضى مى خواندید به تدریس فکر مى کردید؟ یعنى دلتان مى خواست ریاضى بخوانید که آن را به دیگران تدریس کنید؟
شغل آرمانى براى یک دانشجوى ریاضى گرفتن جاى اساتید سابقش است و آرمانى تر این که موفق به کشف فرمول یا حل مسأله اى شود که اسمش در کتابها ماندگار شود. من به اولین آرزویم رسیده ام و حالا به آرزوى دوم فکر مى کنم
دسته بندی | ریاضی |
بازدید ها | 6 |
فرمت فایل | doc |
حجم فایل | 61 کیلو بایت |
تعداد صفحات فایل | 17 |
انسان اولیه چگونه می شمرد؟
در آغاز، انسان اولیه برای نشان دادن عدد مورد نظر خود از زبان اشاره استفاده می کرد. شاید به ببری که کشته بود یا به سر نیزة همسایه اش اشاره می کرد. یا شاید از انگشتانش برای نشان دادن عدد استفاده می کرد. سه انگشت دست معنی» سه« می داد، خواه سه نیزه یا سه ببر دندان دشنه ای، یا سه غار یا سه سر نیزه.
می دانیم که در زندگی روزمره» عدد« کلمه یا نشانه ای است که بر مقدار و تعداد معینی دلالت می کند.اما لازم نیست آنچه را که ما درباره اش گفتگو می کنیم، مشخص کند. مثلاَ» سه« یا» 3« می تواند یه معنی سه هواپیما، سه قلم یا سه کتاب باشد.
در ابتدا، انسان اولیه می توانست تا دو بشمارد.امروزه هنوز در جهان، قبایلی ابتدایی مانند بومیان بدوی استرالیا» ابورجین« ها وجود دارند که فقط سه عدد می شناسند:یک،دو و بسیار. اگر یک نفراز این قبیله سه عدد بومرانگ(*) یا بیشتر داشته باشد، برای شمارش آن فقط عد بسیار را به کار می برد. البته بیشتر انسانهای اولیه تا ده، یعنی مجموع تعداد انگشتان دستان می شمردند. بعضی فقط تا 20 یعنی مجموع تعداد انگشتان دست و پایشان می شمردند.
هنگامی که با انگشتان دست شماره می کردند، تفاوتی نمی کند که از انگشت کوچک دست یا از انگشت شست شروع کنید. اما بین برخی از اقوام برای این کار قاعده هایی وجود داشت. مثلاَ» زونی« ها (قبیله ای از سرخپوستان آمریکای شمالی) شمردن را از انگشت کوچک دست چپ شروع می کردند.یا سرخپوستان اتوماک آمریکای جنوبی شمردن را با انگشت شست آغاز می کردند.
آدمی چون متمدن تر شد، از ترکه چوب، ریگ و گوش ماهی برای نمایش اعداد استفاده می کرد.آنها سه ترکه یا ریگ را در کنار هم ردیف می کردند که معنی»سه«را برساند. عده ای باایجاد شیار هایی بر روی چوب یا گره هایی که به یک طناب می زدند منظورشان را از عددی که می خواستند بیان کنند
می رسانیدند. به این ترتیب همیشه چوبخط یا طناب حساب را با خودشان همراه داشتند یا آن را جایی حفظ می کردند.
انسان از چه وقتی ارقام عددی را به کار برد؟
تا آنجا که بر ما معلوم است در حدود 3000 سال پیش از میلاد، مصریان قدیم و مردمان بین النهرین (سرزمین بین دجله و فرات در عراق امروز) علاماتی برای نوشتن اعداد داشتند. این مردمان با آنکه بسیار دور از هم می زیستند،هر یک مستقلاَ موفق به اختراع یک رشته از ارقام شدند. ارقام سادة آنها چون 1،2و3 المثنای چوب و چوبخط انسانهای نخستین بود. جالب اینجاست که در بسیاری از دستگاههای ارقام که در سراسر جهان کشف شده است رقم 1 به شکل یک خط کوتاه (مانند یک چوب)یا به شکل یک نقطه (مانند ریگ) نوشته می شد.
مردم باستان اعداد را چگونه می نوشتند؟
مصریان باستان ارقام را روی پاپیروس می نوشتند. پاپیروس نوعی کاغذ بود که از نی نیزارهای کناره رود نیل تهیه می شد، یا آنها را روی کوزه ها نقش می کردند یا بر دیوارهای معبدها و هرمهایشان می کندند.
بابلیها از سومریها آموختند که چگونه ارقام را بر لوحه های گلی بنویسند.
چینیهای قدیم با مرکب و قلم خیزران یا قلم پر بر روی پارچه می نوشتند. مایاهای آمریکای مرکزی، بی آنکه با دیگر تمدنهای دنیا ارتباط داشته باشند، یکی از جالبترین دستگاهای عددی را به وجود آوردند. آنها برای نمایش ارقام فقط از سه علامت استفاده می کردند، یک تقطه. ، یک خط مستقیم ـ ، . یک شکل بیضی .
دسته بندی | ریاضی |
بازدید ها | 8 |
فرمت فایل | doc |
حجم فایل | 38 کیلو بایت |
تعداد صفحات فایل | 56 |
آشنایی به راه و روش کسب مجهولات
اهداف مطالعه روش تحقیق
1-آشنایی به راه وروش کسب مجهولات <- مسئله و مشکل معلوم و مشخص است به دنبال عوامل ایجاد کننده هستیم 2-آشنایی به راه وروش دستیابی به حقایق <- حقیقت برای ما ناشناخته است و به دنبال کشف وبا ایجاد آن هستیم
آشنایی با مسائل ومشکلات موجود در انجام تحقیق
آشنایی به راه وروش های علمی تحقیق ازطریق مطالعه نظری وکسب تجربیات عملی
کسب آمادگی لازم برای انجام یک تحقیق
علم چیست؟ عبارت است از تراکم سیستماتیک اطلاعات ودانستنیها قابل اثبات به عبارت دیگر روش کشف مجهولات از طریق معلومات یا توافق فکری و توافق نظری
اهداف علم
1-فرارفتن از حد توصیف 2-مدرج ساختن ابزار شناخت ورابطه های علی سنجش 3-پایداری پدیده ها 4-تعین رابطه تقدم 5-تعیین تکرارپذیری
1-
2-
3-آنچه از روابط پدیده ها بدست می آید حقیقی است یا خیر
4-علم بدنبال اثبات تقدم علت بر معلول است
5-آیا اگر به نتیجه یک بررسی علمی دست یافتیم در صورت تکرار برسی وآزمون نتایج یکسان بدست می آید
مختصات علم
1-از روش خاص پیروی میکند
2-ابطال پذیر است وبدلیل ابزار وفنون جدید وشرایط زمان ومکان جامعه آماری باعث یافته های جدید علمی میشود که علوم قبلی را ابطال میکند
3-دارای تکامل طولی و عرضی است پیشرفت های بدست آمده در یک زمینه علمی بدون منسوخ کردن ونفی علوم قبلی گسترش می یابند و از نظر عرفی رشد وتکامل می یابند.( مثال کشف عناصر موجود در طبیعت)
تکامل طولی علم باعث نفی یافته های قبلی میشود(مانند کشف گردش زمین به دور خورشید )
هدف علمشناخت حقیقت است
شیوه های شناخت
1-روش حجیت (تقلید محض) Authortarian mode
از طریق استناد ومراجعه به کسانی که دارای صلاحیت علمی واجتماعی لازم می باشند بدست می آید ومیزان صلاحیت وارجحیت وشهرت فرد تاثیر بسیاری دارد وا ندیشه چندانی نمی طلبد
روش پررمزوراز mysterical mode
از طریق تاکید بر نیروهای برتر و یا ماوراء طبیعه در حدود شناخت روابط بین پدیده ها بر می آیند
روش منطقی(فردگرایانه)Rationalistic mode
هر چیزی براساس عقل ومنطق قابل شناخت میباشد. در این روش روشهای قبلی مردود هستند وهر چه از طریق اندیشه و عقل بدست می آید قابل قبول میباشد(دکارت)
روش علمی scintific
در این روش از طریق حس وتجربه واقعیت مسائل روشن وقابل شناخت میشوند. و در بین تمام روشها بیشترین استفاده را در شناخت دارد هر چند ممکن است که از سایر روشهای شناخت به منظور مراحلی از روش تحقیق استفاده شوند ولی در نهایت بایستی از طریق روش علمی تایید شوند
روش –شیوه Metod
دستیابی به نتایج علمی میسر نیست مگر با روش شناسی صحیح
روش(دکارت) راهی است که برای دستیابی به حقیقت علوم باید پیمود وبه عبارتی مجموعه تدابیر وشیوه هایی است که برای شناخت حقیقت و برکناری از لغزش به کار برده میشود و به طور کلی به سه چیز اطلاق میشود
مجموعه طرق که انسان را به کشف مجهولات وحل مشکلات هدایت میکند
مجموعه قواعد که به هنگام بررسی وپژوهشی واقعیات باید به کار برده شود
مجموعه ابزار وفنون که راهبری از مجهولات به معلومات را میسر میکند
ویژگیهای روش
1- انتظام پذیر بودن systematic 2-عقلایی بودن Rationalistic
3-روش علمی Emetion 4-واقعیت گرایی Reality
5-شک دستوریMetodcal doobt
1-انتظام پذیر بودن روش ممکن است مجموعه ای از اقدامات مختلف باشد وبایستی تقدم وتاخیر آن رعایت شود ودر غیر این صورت نتیجه ای حاصل نمی شود.
2-عقلایی بودن هر روش منظمی باید بر عقل وفرد منطبق باشد و بنابراین روشهای انتظام پذیر که ناشی از توهم وتخیلات واحساسات باشد پذیرفتنی نیست
روح علمی هر روش منظم وعقلایی باید دارای روح علمی نیز باشدکه مستلزم شرایطی چون بی طرفی خویشتن دارای صعه صدر وتواضع است.
واقعیت گرایی کشف قوانین درست تا نظریات مطقن باید از مسائلی چون درون کاوی-درون نگری یا شهودگرایی و هر آنچه را که موجب دوری از واقعیت میشود جدایی یابد
شک دستوری در این روش محقق به دنبال پی ریزی روشی است که بدور از تقلید صرف یا حافظه محض و یا تعقل واندیشه مبتنی بر شک دستوری مقدمه دانش مستقل را فراهم نماید.
قواعد و ویژگیهای تحقیق علمی
قاعده تجاهل یعنی خود را به جهل زدن و پاک نمودن ذهن از هر گونه پیش داوری وکنار گذاشتن کلیه محفوظات که باعث عدم بی طرفی میشود واحساسات وتعصبات را در امر تحقیق دخالت میدهد
عینیت گرایی هر آنچه را می بینیم ملاک عمل قرارداده و حتی الامکان در جمع آوری اطلاعات به روش علمی استفاده نماییم و از روش ذهنی تنها در تبیین استدلالها و تجزیه وتحلیل ونتیجه گیری مطالب استفاده کنیم
تحدید مصادیق ( محدود کردن) مشخص نمودن حدود یک مسئله جهت جلوگیری از دخالت عوامل خارجی باید موضوع مورد بررسی را به کوچکترین اجزا ممکن تجزیه نمود و
حدود هر مورد را مشخص نماییم این امر باعث میشود تا عوامل خارجی درامر تحقیق دخالتی نداشته باشند از طرفی امکان سنجش واندازه گیری آن فراهم شود.
به هم پیوستگی در قاعده به هم پیوستگی محقق باید در تجزیه وتحلیل وتصمیم گیری اصل کلیت را در نظر داشته باشد وبا توجه به ارتباط بین امور آنها راتجزیه وتحلیل کند و چنانچه جزئیات موضوعی به صورت منفرد ومجزا مورد مطالعه قرار گیرد باید در نهایت تاثیرات متقابل آن با دیگر اجزاء مورد بررسی قرارگیرد مانند بررسی ابعاد و اجزا ساختار سازمانی به صورت جزیی و بعد تجزیه وتحلیل آن با دیگر اجزا مورد بررسی قرار گیرد مانند بررسی ابعاد و اجزا ساختار سازمانی به صورت جزیی و بعد تجزیه وتحلیل آن در یک قالب کلی وپیوسته
افزایشی بودن نتایج حاصل از تحقیقات علمی باید اطلاعات جدیدی به دانش بشری اضافه کند وموجب گسترش مرزهای آن گردد بنابراین سازمان دهی و بیان مجدد دانسته های قبلی نمی تواند تحقیق علمی محسوب شود.
تجربی بودن وجود امکان آزمایش علمی و عینی فرضهای ذهنی در مقابل واقعیات است
نظم داشتن در تحقیق علمی باید از روشهای سیستماتیک ومنظم بهره جست
تحقیق طلبی محقق باید در حوضه مورد تحقیق ومطالعه از آگاهی ودانش نسبی برخوردار باشد
تعمیم پذیری نتایج حاصل از تحقیق باید قابلیت عمومیت دادن آن به جامعه آماری را داشته باشد